Accredited (Indicative) Detail Number: MCI-GF-01

MCI-GF-01 Ground Bearing Floor/ Raft Foundation/ In-situ Suspended Ground Floor Slab/ Pre-cast Suspended Ground Floor. Insulation above Slab with Timber Floor Finish.

Masonry Cavity Wall Insulation

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

GENERAL NOTES

• Ensure that cavities are kept clean of mortar snots or other debris during construction.

• The wall insulation installed below the wall DPC must be fit for purpose with regards to water absorption.

CHECKLIST

☐ THERMAL PERFORMANCE OF JUNCTION

☐ Ensure wall insulation is installed at least 150mm below the top of floor insulation.

☐ Floor insulation must tightly abut the blockwork wall.

☐ Ensure that partial fill insulation is secured firmly against the inner leaf of the cavity wall.

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

☐ AIR BARRIER CONTINUITY

☐ Seal between the wall and floor air barrier with a flexible sealant OR seal the gap between the skirting board and the floor using a flexible sealant.

☐ Seal all penetrations through air barrier using a flexible sealant.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

☐ OPTION

☐ AIR BARRIER OPTIONS

☐ Plaster coat, or

☐ Blockwork inner leaf/parging coat applied to internal face of inner leaf with plasterboard over, or

☐ Plasterboard on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

SITE MANAGER/ SUPERVISOR: SITE NAME: PLOT No: DATE:
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

GENERAL NOTES

- Ensure that cavities are kept clean of mortar snots or other debris during construction.
- The wall insulation installed below the wall DPC must be fit for purpose with regards to water absorption.

CHECKLIST

- **THERMAL PERFORMANCE OF JUNCTION**
 - Install perimeter insulation with a min. R-value of 0.75 m²K/W.
 - Ensure wall insulation is installed at least 150mm below the top of floor insulation.
 - Floor insulation must tightly abut the blockwork wall.
 - Ensure that partial fill insulation is secured firmly against the inner leaf of the cavity wall.
 - Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

- **AIR BARRIER CONTINUITY**
 - Seal between the wall and floor air barrier with a flexible sealant OR seal the gap between the skirting board and the floor using a flexible sealant.
 - Seal all penetrations through air barrier using a flexible sealant.
 - Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

- **AIR BARRIER OPTIONS**
 - Plaster coat, or
 - Blockwork inner leaf/parging coat applied to internal face of inner leaf with plasterboard over, or
 - Plasterboard on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

CHECKLIST

- SITE MANAGER/ SUPERVISOR: SITE NAME: PLOT No: DATE:

MCI-GF-02 Ground Bearing Floor/ Raft Foundation/ In-situ Suspended Ground Floor Slab/ Pre-cast Suspended Ground Floor/Concrete and Screed. Insulation Below Slab.

Masonry Cavity Wall Insulation
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

MCI-IF-01 Concrete Intermediate Floor.

Masonry Cavity Wall Insulation

CHECKLIST (TICK)

THERMAL PERFORMANCE OF JUNCTION
- Continue wall insulation across the floor abutment zone.
- Ensure that partial fill insulation is secured firmly against the inner leaf of the cavity wall.

 Complying with the above checklist items qualifies the builder to claim the \(\Psi \) value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

CHECKLIST (TICK)

AIR BARRIER CONTINUITY
- Ensure a continuous mortar bed between floor slab and top of blockwork wall.
- Seal between the wall air barrier and the top and underside of the floor slab. (The dotted blue line depicts the continuity of the air barrier through the floor zone)
- Seal the gap between the skirting board and floor using a flexible sealant.
- Seal all penetrations through air barrier using a flexible sealant.

 Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

OPTION (TICK)

AIR BARRIER OPTIONS
- Plaster coat, or
- Blockwork inner leaf/parging coat applied to internal face of inner leaf with plasterboard over
- Plasterboard on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

GENERAL NOTES
- Ensure that cavities are kept clean of mortar snots or other debris during construction.
- This detail is diagrammatic only. Where the floor is a separating floor, this would normally have an acoustic ceiling and further treatments would be provided. See requirements of Approved Document E.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.
Accredited (Indicative) Detail Number: MCI-IW-02

MCI-IW-02 Masonry Separating Wall Head.

Masonry Cavity Wall Insulation

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

GENERAL NOTES

- Refer to Approved Document B for fire safety requirements and to Approved Document E for sound insulation requirements.
- This detail to be read in conjunction with detail No: MCI-IW-01.

THERMAL PERFORMANCE OF JUNCTION

CHECKLIST
- Pack compressible insulation between last truss/joist and separating wall.
- Ensure that the full depth of insulation between and over the joists extends to the inner face of the wall.

Complying with the above checklist items qualifies the builder to claim the \(\Psi \) value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

AIR BARRIER CONTINUITY

CHECKLIST
- Fix ceiling first and seal all gaps between the ceiling and masonry wall with either adhesive or flexible sealant.
- Seal all penetrations through air barrier using a flexible sealant.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

AIR BARRIER OPTIONS

OPTION
- Plaster coat, or
- Blockwork inner leaf/parging coat applied to internal face of inner leaf with plasterboard over
- Plasterboard on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

Masonry Cavity Wall Insulation
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.
Accredited (Indicative) Detail Number: MCI-IW-04

MCI-IW-04 Masonry Partition Wall Head.

GENERAL NOTES
- This detail to be read in conjunction with detail No: MCI-IW-03.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

<table>
<thead>
<tr>
<th>SITE MANAGER/ SUPERVISOR:</th>
<th>SITE NAME:</th>
<th>PLOT No:</th>
<th>DATE:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CHECKLIST

<table>
<thead>
<tr>
<th>(TICK)</th>
<th>THERMAL PERFORMANCE OF JUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ensure that the full depth of insulation between and over the joists extends over the head of the partition wall.</td>
</tr>
<tr>
<td></td>
<td>Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(TICK)</th>
<th>AIR BARRIER CONTINUITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fix ceiling first and seal all gaps between the ceiling and masonry wall with either plaster, adhesive or flexible sealant. (The dotted blue line depicts the continuity of the air barrier through the head of the partition blockwork)</td>
</tr>
<tr>
<td></td>
<td>Seal all penetrations through air barrier using a flexible sealant.</td>
</tr>
<tr>
<td></td>
<td>Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(TICK)</th>
<th>AIR BARRIER OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plasterboard ceiling</td>
</tr>
</tbody>
</table>
Accredited (Indicative) Detail Number: MCI-IW-05

MCI-IW-05 Timber Stud Partition Wall/ External Wall Abutment.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

Masonry Cavity Wall Insulation

THERMAL PERFORMANCE OF JUNCTION

- Continue cavity wall insulation across the abutment zone.
- Ensure that partial fill insulation is secured firmly against the inner leaf of the cavity wall.

Complying with the above checklist items qualifies the builder to claim the ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

AIR BARRIER CONTINUITY

- Install external air barrier prior to the partition lining and seal all gaps between the air barrier and timber stud with flexible sealant. (The dotted blue line depicts the continuity of the air barrier through the partition stud member)
- Seal all penetrations through air barrier using a flexible sealant.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

AIR BARRIER OPTIONS

- Plaster coat, or
- Blockwork inner leaf/parging coat applied to internal face of inner leaf with plasterboard over, or
- Plasterboard on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

CHECKLIST

(TICK)

THERMAL PERFORMANCE OF JUNCTION

- Continue cavity wall insulation across the abutment zone.
- Ensure that partial fill insulation is secured firmly against the inner leaf of the cavity wall.

Complying with the above checklist items qualifies the builder to claim the ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

AIR BARRIER CONTINUITY

- Install external air barrier prior to the partition lining and seal all gaps between the air barrier and timber stud with flexible sealant. (The dotted blue line depicts the continuity of the air barrier through the partition stud member)
- Seal all penetrations through air barrier using a flexible sealant.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

AIR BARRIER OPTIONS

- Plaster coat, or
- Blockwork inner leaf/parging coat applied to internal face of inner leaf with plasterboard over, or
- Plasterboard on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

OPTION

(TICK)

GENRAL NOTES

- Ensure that cavities are kept clean of mortar snots or other debris during construction.
- This detail to be read in conjunction with detail No: MCI-IW-06.

SITE MANAGER/ SUPERVISOR: SITE NAME: PLOT No: DATE:

CHECKLIST

(TICK)

THERMAL PERFORMANCE OF JUNCTION

- Continue cavity wall insulation across the abutment zone.
- Ensure that partial fill insulation is secured firmly against the inner leaf of the cavity wall.

Complying with the above checklist items qualifies the builder to claim the ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

AIR BARRIER CONTINUITY

- Install external air barrier prior to the partition lining and seal all gaps between the air barrier and timber stud with flexible sealant. (The dotted blue line depicts the continuity of the air barrier through the partition stud member)
- Seal all penetrations through air barrier using a flexible sealant.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

AIR BARRIER OPTIONS

- Plaster coat, or
- Blockwork inner leaf/parging coat applied to internal face of inner leaf with plasterboard over, or
- Plasterboard on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

OPTION

(TICK)

GENERAL NOTES

- Ensure that cavities are kept clean of mortar snots or other debris during construction.
- This detail to be read in conjunction with detail No: MCI-IW-06.

SITE MANAGER/ SUPERVISOR: SITE NAME: PLOT No: DATE:

CHECKLIST

(TICK)

THERMAL PERFORMANCE OF JUNCTION

- Continue cavity wall insulation across the abutment zone.
- Ensure that partial fill insulation is secured firmly against the inner leaf of the cavity wall.

Complying with the above checklist items qualifies the builder to claim the ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

AIR BARRIER CONTINUITY

- Install external air barrier prior to the partition lining and seal all gaps between the air barrier and timber stud with flexible sealant. (The dotted blue line depicts the continuity of the air barrier through the partition stud member)
- Seal all penetrations through air barrier using a flexible sealant.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

AIR BARRIER OPTIONS

- Plaster coat, or
- Blockwork inner leaf/parging coat applied to internal face of inner leaf with plasterboard over, or
- Plasterboard on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

OPTION

(TICK)

GENERAL NOTES

- Ensure that cavities are kept clean of mortar snots or other debris during construction.
- This detail to be read in conjunction with detail No: MCI-IW-06.

SITE MANAGER/ SUPERVISOR: SITE NAME: PLOT No: DATE:

CHECKLIST

(TICK)

THERMAL PERFORMANCE OF JUNCTION

- Continue cavity wall insulation across the abutment zone.
- Ensure that partial fill insulation is secured firmly against the inner leaf of the cavity wall.

Complying with the above checklist items qualifies the builder to claim the ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

AIR BARRIER CONTINUITY

- Install external air barrier prior to the partition lining and seal all gaps between the air barrier and timber stud with flexible sealant. (The dotted blue line depicts the continuity of the air barrier through the partition stud member)
- Seal all penetrations through air barrier using a flexible sealant.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

AIR BARRIER OPTIONS

- Plaster coat, or
- Blockwork inner leaf/parging coat applied to internal face of inner leaf with plasterboard over, or
- Plasterboard on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

OPTION

(TICK)

GENERAL NOTES

- Ensure that cavities are kept clean of mortar snots or other debris during construction.
- This detail to be read in conjunction with detail No: MCI-IW-06.
Accredited (Indicative) Detail Number: MCI-IW-06

GENERAL NOTES
- This detail to be read in conjunction with detail No: MCI-IW-05.

- The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

MCI-IW-06 Timber Stud Partition Wall Head.

Masonry Cavity Wall Insulation

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

CHECKLIST

THERMAL PERFORMANCE OF JUNCTION
- Ensure that the full depth of insulation between and over the joists extends over the head of the wall.

 Complying with the above checklist items qualifies the builder to claim the \(\Psi \) value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

AIR BARRIER CONTINUITY
- Fix ceiling first and seal all gaps between the ceiling and head member of partition with flexible sealant prior to installing partition linings. ☐ (The dotted blue line depicts the continuity of the air barrier through the head stud member)
- Seal all penetrations through air barrier using a flexible sealant.

 Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

AIR BARRIER OPTIONS
- Plasterboard ceiling
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

GENERAL NOTES

- Ensure that cavities are kept clean of mortar snots or other debris during construction.
- This detail to be read in conjunction with detail No: MCI-IW-08.
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.
Accredited (Indicative) Detail Number: MCI-RE-02

THERMAL PERFORMANCE OF JUNCTION

- Ensure the gap between the wall plate and the proprietary eaves ventilator is completely filled with insulation having a min. R-value across the thickness of the insulation of 1.2 m².K/W.
- Ensure continuity of the insulation throughout the junction.
- Ensure that the full depth of insulation between and over the joists abuts the eaves insulation.
- Ensure that partial fill insulation is secured firmly against the inner leaf of the cavity wall. If using partial fill insulation, tuck compressible insulation down into head of cavity.

Complying with the above checklist items qualifies the builder to claim the value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

AIR BARRIER CONTINUITY

- Bed the wall plate on a continuous mortar bed.
- Fix ceiling first and seal all gaps between the ceiling and masonry wall with either plaster, adhesive or flexible sealant.
- Seal all penetrations through air barrier using a flexible sealant.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

AIR BARRIER OPTIONS

- Plaster coat, or
- Blockwork inner leaf/parging coat applied to internal face of inner leaf with plasterboard over, or
- Plasterboard on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

GENERAL NOTES

- Ensure that cavities are kept clean of mortar snots or other debris during construction.
- The use of over joist insulation is considered best practice as it eliminates the cold bridge caused by the joist.
- Vapour permeable roof underlay to be used in strict accordance with approved third party certification.
- The installation of the eaves insulation must not prevent free water drainage below the tiling battens.
- This detail to be read in conjunction with detail No: MCI-RG-01.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

Masonry Cavity Wall Insulation
Accredited (Indicative) Detail Number: MCI-RE-03

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

Masonry Cavity Wall Insulation
Accredited (Indicative) Detail Number: MCI-RG-04

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

GENERAL NOTES

- Ensure that cavities are kept clean of mortar snots or other debris during construction.
- If required by BS5250 use a vapour control plasterboard or a separate vapour control layer behind the plasterboard.
- Vapour permeable roof underlay to be used in strict accordance with approved third party certification.
- The use of over joist and under rafter insulation is considered best practice as it eliminates the cold bridge caused by the joist/rafter.
- The installation of the eaves insulation must not prevent free water drainage below the tiling battens.
- This detail to be read in conjunction with detail No: MCI-RG-02

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

CHECKLIST

THERMAL PERFORMANCE OF JUNCTION

- Ensure the gap between the wall plate and the proprietary eaves ventilator is completely filled with insulation having a min. R-value across the thickness of the insulation of 1.2 m².K/W.
- Ensure continuity of the insulation throughout the junction.
- Ensure that the full depth of insulation between and below the rafters abuts the eaves insulation.
- Ensure that the insulation is installed tightly between the rafters and is in contact with the under rafter insulation.
- Ensure that partial fill insulation is secured firmly against the inner leaf of the cavity wall. If using partial fill insulation, tuck compressible insulation down into head of cavity.

Complying with the above checklist items qualifies the builder to claim the value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

CHECKLIST

AIR BARRIER CONTINUITY

- Bed the wall plate on a continuous mortar bed.
- Fix ceiling first and seal all gaps between the ceiling and masonry wall with either plaster, adhesive or flexible sealant.
- Seal all penetrations through air barrier using a flexible sealant.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

OPTION

AIR BARRIER OPTIONS

- Plaster coat, or
- Blockwork inner leaf/parging coat applied to internal face of inner leaf with plasterboard over
- Plasterboard on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

SITE MANAGER/ SUPERVISOR: SITE NAME: PLOT No: DATE:
Accredited (Indicative) Detail Number: MCI-RE-05

Ventilated Rafter Void. Eaves

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

THERMAL PERFORMANCE OF JUNCTION

- Ensure the gap between the wall plate and the proprietary eaves ventilator is completely filled with insulation having a min. R-value across the thickness of the insulation of 1.2 m².K/W.
- Ensure continuity of the insulation throughout the junction.
- Ensure that the full depth of insulation between and over the joists abuts the eaves insulation.
- Ensure that the insulation is installed tightly between the rafters and is in contact with the under rafter insulation.
- Ensure that partial fill insulation is secured firmly against the inner leaf of the cavity wall. If using partial fill insulation, tuck compressible insulation down into head of cavity.

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

AIR BARRIER CONTINUITY

- Bed the wall plate on a continuous mortar bed.
- Fix ceiling first and seal all gaps between the ceiling and masonry wall with either plaster, adhesive or flexible sealant.
- Seal all penetrations through air barrier using a flexible sealant.
- Install a double, full depth timber nogging between the floor joists and seal between the nogging, ceiling and upper stud wall with a flexible sealant.

(The dotted blue line depicts the continuity of the air barrier through the noggings)

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

AIR BARRIER OPTIONS

- Plaster coat, or
- Blockwork inner leaf/pargeting coat applied to internal face of inner leaf with plasterboard over, or
- Plasterboard on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

GENERAL NOTES

- Ensure that cavities are kept clean of mortar snots or other debris during construction.
- Use a proprietary eaves ventilator to ensure ventilation in accordance with BS5250.
- If required by BS5250 use a vapour control plasterboard or a separate vapour control layer behind the plasterboard.
- The use of over joist and under rafter insulation is considered best practice as it eliminates the cold bridge caused by the joist/rafter.
- The installation of the eaves insulation must not prevent free water drainage below the tiling battens.
- This detail to be read in conjunction with detail No: MCI-RG-03.

SITE MANAGER/ SUPERVISOR: SITE NAME: PLOT No: DATE:

Masonry Cavity Wall Insulation
Accredited (Indicative) Detail Number: MCI-RE-06

GENERAL NOTES

- Ensure that cavities are kept clean of mortar snots or other debris during construction.
- If required by BS5250 use a vapour control plasterboard or a separate vapour control layer behind the plasterboard.
- Use a proprietary eaves ventilator to ensure ventilation in accordance with BS5250.
- The use of over joist and under rafter insulation is considered best practice as it eliminates the cold bridge caused by the joist/rafter.
- The installation of the eaves ventilator must not prevent free water drainage below the tiling battens.
- This detail to be read in conjunction with detail No: MCI-RG-03.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

CHECKLIST (TICK)

THERMAL PERFORMANCE OF JUNCTION

- Ensure the gap between the wall plate and the proprietary eaves ventilator is completely filled with insulation having a min. R-value across the thickness of the insulation of 1.2 m².K/W.
- Ensure continuity of the insulation throughout the junction.
- Ensure that the full depth of insulation between and under the rafters abuts the eaves insulation.
- Ensure that the insulation is installed tightly between the rafters and is in contact with the under rafter insulation.
- Ensure that partial fill insulation is secured firmly against the inner leaf of the cavity wall. If using partial fill insulation, tuck compressible insulation down into head of cavity.

Complying with the above checklist items qualifies the builder to claim the $ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

CHECKLIST (TICK)

AIR BARRIER CONTINUITY

- Bed the wall plate on a continuous mortar bed.
- Fix ceiling first and seal all gaps between the ceiling and masonry wall with either plaster, adhesive or flexible sealant.
- Seal all penetrations through air barrier using a flexible sealant.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

OPTION (TICK)

AIR BARRIER OPTIONS

- Plaster coat, or
- Blockwork inner leaf/parging coat applied to internal face of inner leaf with plasterboard over
- Plasterboard on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

SITE MANAGER/ SUPERVISOR: SITE NAME: PLOT No: DATE:

Masonry Cavity Wall Insulation
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.
Accredited (Indicative) Detail Number: MCI-RE-08

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

CHECKLIST

THERMAL PERFORMANCE OF JUNCTION

- Ensure the gap between the wall plate and the top of rafter is completely filled with insulation having a min. R-value across the thickness of the insulation of 1.2 m².K/W.
- Ensure continuity of the insulation throughout the junction.
- Ensure that the full depth of insulation between and over the rafters abuts the eaves insulation.
- Ensure that the insulation is installed tightly between the rafters and is in contact with the over rafter insulation.
- Ensure that partial fill insulation is secured firmly against the inner leaf of the cavity wall. If using partial fill insulation, tuck compressible insulation down into head of cavity.

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

CHECKLIST

AIR BARRIER CONTINUITY

- Bed the wall plate on a continuous mortar bed.
- Fix ceiling first and seal all gaps between the ceiling and masonry wall with either plaster, adhesive or flexible sealant.
- Seal all penetrations through air barrier using a flexible sealant.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

OPTION

AIR BARRIER OPTIONS

- Plaster coat, or
- Blockwork inner leaf/parging coat applied to internal face of inner leaf with plasterboard over, or
- Plasterboard on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

GENERAL NOTES

- Ensure that cavities are kept clean of mortar snots or other debris during construction.
- If required by BS5250 use a vapour control plasterboard or a separate vapour control layer behind the plasterboard.
- Vapour permeable roof underlay to be used in strict accordance with approved third party certification.
- The use of over rafter/joist insulation is considered best practice as it eliminates the cold bridge caused by the rafter/joist.
- This detail to be read in conjunction with detail No: MCI-RG-04.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

SITE MANAGER/ SUPERVISOR: **SITE NAME:** **PLOT No:** **DATE:**

Masonry Cavity Wall Insulation
Accredited (Indicative) Detail Number: MCI-RF-01

MCI-RF-01 Timber Flat Roof with Overhanging Eaves and Verge.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

THERMAL PERFORMANCE OF JUNCTION

- Ensure the top of wall is level and that the wall insulation is taken up level with top of wall.
- Fit the insulation over the top of the wall within the gable ladder. Fully fill the void ensuring that the insulation is installed tightly between the joists and is in contact with the roof deck.
- Ensure that the full depth of over roof insulation over the joists extends to the edge of the roof.
- Ensure that partial fill insulation is secured firmly against the inner leaf of the cavity wall.

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

AIR BARRIER CONTINUITY

- Fix ceiling first and seal all gaps between the ceiling and masonry wall with either plaster, adhesive or flexible sealant.
- Seal all penetrations through air barrier using a flexible sealant.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

AIR BARRIER OPTIONS

- Plaster coat, or
- Blockwork inner leaf/parging coat applied to internal face of inner leaf with plasterboard over
- Plasterboard on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

GENERAL NOTES

- Ensure that cavities are kept clean of mortar snots or other debris during construction.
- BS5250 requires a vapour control layer to be installed between the deck and insulation.
- Turn up vapour control layer at edge of roof insulation, lap with roof waterproofing layer, and seal.

CHECKLIST

- [] Thermal performance of junction
- [] Air barrier continuity
- [] Air barrier options

CHECKLIST (TICK)

- [] Ensure the top of wall is level and that the wall insulation is taken up level with top of wall.
- [] Fit the insulation over the top of the wall within the gable ladder. Fully fill the void ensuring that the insulation is installed tightly between the joists and is in contact with the roof deck.
- [] Ensure that the full depth of over roof insulation over the joists extends to the edge of the roof.
- [] Ensure that partial fill insulation is secured firmly against the inner leaf of the cavity wall.

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

AIR BARRIER CONTINUITY

- Fix ceiling first and seal all gaps between the ceiling and masonry wall with either plaster, adhesive or flexible sealant.
- Seal all penetrations through air barrier using a flexible sealant.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

AIR BARRIER OPTIONS

- Plaster coat, or
- Blockwork inner leaf/parging coat applied to internal face of inner leaf with plasterboard over
- Plasterboard on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

SITE MANAGER/ SUPERVISOR:

SITE NAME:

PLOT No:

DATE:

Masonry Cavity Wall Insulation
MCI-RF-02 Timber Flat Roof with Parapet.

Masonry Cavity Wall Insulation

Accredited (Indicative) Detail Number: MCI-RF-02

CHECKLIST

(TICK)

THERMAL PERFORMANCE OF JUNCTION

☐ Install an insulation upstand having a minimum R value of 0.75m²K/W (in the heat flow direction perpendicular to the wall surface) around parapet.

☐ Maintain a minimum distance of 300 mm between the top of the insulation upstand and bottom of horizontal roof insulation.

☐ Ensure that the roof insulation tightly abuts the inner face of the parapet wall.

☐ Ensure that partial fill insulation is secured firmly against the inner leaf of the cavity wall.

Complying with the above checklist items qualifies the builder to claim the \(\Psi \) value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

CHECKLIST

(TICK)

AIR BARRIER CONTINUITY

☐ Fix ceiling first and seal all gaps between the ceiling and masonry wall with either plaster, adhesive or flexible sealant.

☐ Seal all penetrations through air barrier using a flexible sealant.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

OPTION

(TICK)

AIR BARRIER OPTIONS

☐ Plaster coat, or

☐ Blockwork inner leaf/parging coat applied to internal face of inner leaf with plasterboard over

☐ Plasterboard on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

GENERAL NOTES

- Ensure that cavities are kept clean of mortar snots or other debris during construction.
- BS5250 requires a vapour control layer to be installed between the deck and insulation.
- Turn up vapour control layer at edge of roof insulation, lap with roof waterproofing layer, and seal.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

SITE MANAGER/SUPERVISOR:
SITE NAME:
PLOT No:
DATE:

<details>
<summary>Masonry Cavity Wall Insulation</summary>

MCI-RG-01 Pitched Roof. Ventilated & Unventilated Loft. Gable.

GENERAL NOTES
- Ensure that cavities are kept clean of mortar snots or other debris during construction.
- The use of over joist insulation is considered best practice as it eliminates the cold bridge caused by the joist.
- This detail to be read in conjunction with detail Nos: MCI-RE-01 or MCI-RE-02.

CHECKLIST (TICK)

THERMAL PERFORMANCE OF JUNCTION
- Pack compressible insulation between last truss/joist and gable wall.
- Ensure that the full depth of insulation between and over the joists extends to the inner edge of the wall.
- Ensure that partial fill insulation is secured firmly against the inner leaf of the cavity wall.

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

CHECKLIST (TICK)

AIR BARRIER CONTINUITY
- Fix ceiling first and seal all gaps between the ceiling and masonry wall with either plaster, adhesive or flexible sealant.
- Seal all penetrations through air barrier using a flexible sealant.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

OPTION (TICK)

AIR BARRIER OPTIONS
- Plaster coat, or
- Blockwork inner leaf/parging coat applied to internal face of inner leaf with plasterboard over
- Plasterboard on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.
Accredited (Indicative) Detail Number: MCI-RG-02

CHECKLIST (TICK)

THERMAL PERFORMANCE OF JUNCTION

☐ Ensure the top of wall is levelled with mortar to the correct pitch and that the wall insulation is taken up level with top of wall. ①

☐ Ensure continuity of the insulation throughout the junction.

☐ Fit the insulation over the top of the wall within the gable ladder. Fill the void unless the roof underlay requires to be draped when a 25mm void must be maintained. ②

☐ Ensure that the full depth of insulation between and under the rafters extends to the wall. Pack the gap between rafter and wall with compressible insulation. ③

☐ Ensure that the insulation is installed tightly between the rafters and is in contact with the under rafter insulation. ④

☐ Ensure that partial fill insulation is secured against the inner leaf of the cavity wall.

Complying with the above checklist items qualifies the builder to claim the $Ψ$ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

CHECKLIST (TICK)

AIR BARRIER CONTINUITY

☐ Fix ceiling first and seal all gaps between the ceiling and masonry wall with either plaster, adhesive or flexible sealant.

☐ Seal all penetrations through air barrier using a flexible sealant.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

OPTION (TICK)

AIR BARRIER OPTIONS

☐ Plaster coat, or

☐ Blockwork inner leaf/parging coat applied to internal face of inner leaf with plasterboard over, or

☐ Plasterboard on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

GENERAL NOTES

- Ensure that cavities are kept clean of mortar snots or other debris during construction.
- If required by BS5250 use a vapour control plasterboard or a separate vapour control layer behind the plasterboard.
- Vapour permeable roof underlay to be used in strict accordance with approved third party certification.
- This detail to be read in conjunction with detail No: MCI-RE-03 or MCI-RE-04.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

Masonry Cavity Wall Insulation
Accredited (Indicative) Detail Number: MCI-RG-03

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

Ventilated Rafter Void. Gable

Masonry Cavity Wall Insulation

GENERAL NOTES

- Ensure that cavities are kept clean of mortar snots or other debris during construction.
- If required by BS5250 use a vapour control plasterboard or a separate vapour control layer behind the plasterboard.
- The use of under rafter insulation is considered best practice as it eliminates the cold bridge caused by the rafter.
- Ensure ventilation to roof build-up in accordance with BS5250.
- This detail to be read in conjunction with detail No: MCI-RE-05 or MCI-RE-06.

THERMAL PERFORMANCE OF JUNCTION

- Ensure the top of wall is levelled with mortar to the correct pitch and that the wall insulation is taken up level with top of wall.
- Ensure continuity of the insulation throughout the junction.
- Fit the insulation over the top of the wall within the gable ladder. Fully fill the void unless the roof underlay requires to be draped when a 25mm void must be maintained.
- Ensure that the full depth of insulation between and under the rafters extends to the wall. Pack the gap between rafter and wall with compressible insulation.
- Ensure that the insulation is installed tightly between the rafters and is in contact with the under rafter insulation.
- Ensure that partial fill insulation is secured firmly against the inner leaf of the cavity wall.

Air Barrier Continuity

- Fix ceiling first and seal all gaps between the ceiling and masonry wall with either plaster, adhesive or flexible sealant.
- Seal all penetrations through air barrier using a flexible sealant.

Air Barrier Options

- Plaster coat, or
- Blockwork inner leaf/parging coat applied to internal face of inner leaf with plasterboard over
- Plasterboard on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

Site Manager/Supervisor: Site Name: Plot No: Date:

<table>
<thead>
<tr>
<th>CHECKLIST (TICK)</th>
<th>THERMAL PERFORMANCE OF JUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ensure the top of wall is levelled...</td>
</tr>
<tr>
<td></td>
<td>Ensure continuity of the insulation...</td>
</tr>
<tr>
<td></td>
<td>Fit the insulation over the top of...</td>
</tr>
<tr>
<td></td>
<td>Ensure that the full depth of...</td>
</tr>
<tr>
<td></td>
<td>Ensure that the insulation is...</td>
</tr>
<tr>
<td></td>
<td>Ensure that partial fill insulation...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHECKLIST (TICK)</th>
<th>AIR BARRIER CONTINUITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fix ceiling first and...</td>
</tr>
<tr>
<td></td>
<td>Seal all penetrations...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OPTION (TICK)</th>
<th>AIR BARRIER OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plaster coat, or...</td>
</tr>
<tr>
<td></td>
<td>Blockwork inner leaf/parging coat...</td>
</tr>
<tr>
<td></td>
<td>Plasterboard on dabs...</td>
</tr>
</tbody>
</table>
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

CHECKLIST

THERMAL PERFORMANCE OF JUNCTION

- Ensure the top of wall is levelled with mortar to the correct pitch and that the wall insulation is taken up level with top of wall.
- Fit the insulation over the top of the wall within the gable ladder. Fully fill the void between the wall head and the over rafter insulation.
- Ensure that the full depth of insulation between and over the rafters extends to the wall. Pack the gap between rafter and wall with compressible insulation.
- Ensure that the insulation is installed tightly between the rafters and is in contact with the over rafter insulation.
- Ensure that partial fill insulation is secured firmly against the inner leaf of the cavity wall.

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

CHECKLIST

AIR BARRIER CONTINUITY

- Fix ceiling first and seal all gaps between the ceiling and masonry wall with plaster, adhesive or flexible sealant.
- Seal all penetrations through air barrier using a flexible sealant.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

OPTION

AIR BARRIER OPTIONS

- Plaster coat, or
- Blockwork inner leaf/parging coat applied to internal face of inner leaf with plasterboard over
- Plasterboard on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

GENERAL NOTES

- Ensure that cavities are kept clean of mortar snots or other debris during construction.
- If required by BS5250 use a vapour control plasterboard or a separate vapour control layer behind the plasterboard.
- Vapour permeable roof underlay to be used in strict accordance with approved third party certification.
- The use of over rafter insulation is considered best practice as it eliminates the cold bridge caused by the rafter.
- This detail to be read in conjunction with detail No: MCI-RE-07 or MCI-RE-08

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

SITE MANAGER/ SUPERVISOR:
SITE NAME:
PLOT No:
DATE:
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.
Accredited (Indicative) Detail Number: MCI-WD-02

MCI-WD-02 Windows and Doors. Independent Lintels.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

General Notes

- Ensure that cavities are kept clean of mortar snots or other debris during construction.

General Notes

- Ensure that cavities are kept clean of mortar snots or other debris during construction.

Thermal Performance of Junction

- Install a proprietary cavity closer or block of insulation having a path of minimum thermal resistance path through the closer of not less than 0.45 m²K/W (manufacturers certified data).
- Ensure that all gaps around and between lintels are filled with tightly packed insulation material.
- Minimum frame overlap to be 30mm.
- Ensure that partial fill insulation is secured firmly against the inner leaf of the cavity wall.

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

Air Barrier Continuity

- Apply flexible sealant to all interfaces between the internal air barrier and the window/door frame members.
- If forming the air barrier to the walls with the blockwork inner leaf or a parging coat on blocks, a flexible sealant should be installed between the cavity closer and blockwork wall.
- Seal all penetrations through air barrier using a flexible sealant.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

Air Barrier Options

- Plaster coat,
- Blockwork inner leaf/parging coat applied to internal face of inner leaf with plasterboard over, or
- Plasterboard on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

GENERAL NOTES
- Ensure that cavities are kept clean of mortar snots or other debris during construction.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.
MCI-WD-04 Windows and Doors. Cills.

Masonry Cavity Wall Insulation

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

CHECKLIST

THERMAL PERFORMANCE OF JUNCTION

- Install a proprietary cavity closer having a path of minimum thermal resistance path through the closer of not less than 0.45 m²K/W (manufacturers certified data).
- Minimum frame overlap to be 30mm
- Ensure that partial fill insulation is secured firmly against the inner leaf of the cavity wall.

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

CHECKLIST

AIR BARRIER CONTINUITY

- Ensure air barrier continuity between the window and the wall air barrier line.
- If forming the air barrier to the walls with the blockwork inner leaf or a parge coat on blocks, a flexible sealant should be installed between the cavity closer and blockwork wall.
- Flexible sealant should be applied to the junction between the plaster/plasterboard and cill board and between the cill board and window frame member.
- Seal all penetrations through air barrier using a flexible sealant.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

OPTION

AIR BARRIER OPTIONS

- Plaster coat, or
- Blockwork inner leaf/parging coat applied to internal face of inner leaf with plasterboard over, or
- Plasterboard on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

GENERAL NOTES

- Ensure that cavities are kept clean of mortar snots or other debris during construction.

SITE MANAGER/ SUPERVISOR:
SITE NAME:
PLOT No:
DATE:
Accredited (Indicative) Detail Number: MCI-WD-05

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

Masonry Cavity Wall Insulation

CHECKLIST

(TICK)

THERMAL PERFORMANCE OF JUNCTION
 □ Install a proprietary cavity closer having a path of minimum thermal resistance path through the closer of not less than 0.45 m²K/W (manufacturers certified data).
 □ Minimum frame overlap to be 30mm
 □ Ensure that partial fill insulation is secured firmly against the inner leaf of the cavity wall.
 Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

CHECKLIST

(TICK)

AIR BARRIER CONTINUITY
 □ Apply flexible sealant to all interfaces between the internal air barrier and the window/door frame members.
 □ If forming the air barrier to the walls with the blockwork inner leaf or a parge coat on blocks, a flexible sealant should be installed between the cavity closer and blockwork wall.
 □ Seal all penetrations through air barrier using a flexible sealant.
 Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

OPTION

(TICK)

AIR BARRIER OPTIONS
 □ Plaster coat, or
 □ Blockwork inner leaf/pargiing coat applied to internal face of inner leaf with plasterboard over, or
 □ Plasterboard on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

GENERAL NOTES

- Ensure that cavities are kept clean of mortar snots or other debris during construction.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.
Accredited (Indicative) Detail Number: MCI-WD-06

THERMAL PERFORMANCE OF JUNCTION

- Install a proprietary cavity closer having a path of minimum thermal resistance path through the closer of not less than 0.45 m²K/W (manufacturers certified data).
- Ensure that partial fill insulation is secured firmly against the inner leaf of the cavity wall.

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

AIR BARRIER CONTINUITY

- Apply flexible sealant to all interfaces between the internal air barrier and the window/door frame members.
- If forming the air barrier to the walls with the blockwork inner leaf or a parging coat on blocks, a flexible sealant should be installed between the cavity closer and blockwork wall.
- Seal all penetrations through air barrier using a flexible sealant.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

AIR BARRIER OPTIONS

- Plaster coat, or
- Blockwork inner leaf/parging coat applied to internal face of inner leaf with plasterboard over plasterboard on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

GENERAL NOTES

- Ensure that cavities are kept clean of mortar snots or other debris during construction.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.