The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

GENERAL NOTES

- Cavity barriers to be installed as required.

THERMAL PERFORMANCE OF JUNCTION

- Ensure insulation is tucked into corners.

 Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

AIR BARRIER CONTINUITY

- Seal all penetrations through air barrier using a flexible sealant or tape.

 Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

AIR BARRIER OPTIONS

- Internal lining (e.g. plasterboard)
Accredited (Indicative) Detail Number: TFW-GF-01

GENERAL NOTES

- If sole plates are packed to level ensure that any gaps are sealed.
- Ensure sole plate DPC turns up behind and laps with vertical vapour control layer/vapour control plasterboard to improve airtightness.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

TFW-GF-01 Ground Bearing Floor/ Raft Foundation/ In-situ Suspended Ground Floor Slab/ Pre-cast Suspended Ground Floor. Insulation above Slab with Timber Floor Finish.

THERMAL PERFORMANCE OF JUNCTION

- Floor insulation must tightly abut the inner face of the timber frame soleplate.
- Complying with the above checklist items qualifies the builder to claim the \(\Psi \) value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

AIR BARRIER CONTINUITY

- Seal between the wall and floor air barrier \(\odot \) OR seal the gap between the skirting board and the floor using a flexible sealant. \(\odot \)
- Seal all penetrations through air barrier using a flexible sealant or tape.
- Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

AIR BARRIER OPTIONS

- Internal lining (e.g. plasterboard)
Accredited (Indicative) Detail Number: TFW-GF-02

THERMAL PERFORMANCE OF JUNCTION

- Floor slab perimeter must have minimum R-Value value of 0.75m²K/W.
- Floor insulation must tightly abut the inner face of the concrete block.

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

AIR BARRIER CONTINUITY

- Seal between the wall and floor air barrier OR seal the gap between the skirting board and the floor using a flexible sealant.
- Seal all penetrations through air barrier using a flexible sealant or tape.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

AIR BARRIER OPTIONS

- Internal lining (e.g. plasterboard)

GENERAL NOTES

- If sole plates are packed to level ensure that any gaps are sealed.
- Ensure sole plate DPC turns up behind and laps with vertical vapour control layer/vapour control plasterboard to improve airtightness.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

TFW-GF-02 Ground Bearing Floor/ Raft Foundation/ In-situ Suspended Ground Floor Slab/ Pre-cast Suspended Ground Floor/Concrete and Screed. Insulation Below Slab

Timber Frame
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

GENERAL NOTES

- Ventilate sub-floor (vents not shown).
- If compressible insulation is installed, ensure that full insulation depth is achieved between floor joists by fixing netting to sides of joists with battens. ②

CHECKLIST

<table>
<thead>
<tr>
<th>(TICK)</th>
<th>THERMAL PERFORMANCE OF JUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ensure insulation is in contact with the underside of the timber flooring. ①</td>
</tr>
<tr>
<td></td>
<td>Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(TICK)</th>
<th>AIR BARRIER CONTINUITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Seal between the wall and floor air barrier ② OR seal the gap between the skirting board and the floor using a flexible sealant. ①</td>
</tr>
<tr>
<td></td>
<td>Seal all penetrations through air barrier using a flexible sealant or tape.</td>
</tr>
<tr>
<td></td>
<td>Seal joints in the timber floor with a suitable glue. Support and fix any square edge joints in the decking to the joists.</td>
</tr>
<tr>
<td></td>
<td>Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(TICK)</th>
<th>AIR BARRIER OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Internal lining (e.g. plasterboard)</td>
</tr>
</tbody>
</table>

SITE MANAGER/ SUPERVISOR:

SITE NAME:

PLOT No:

DATE:
Accredited (Indicative) Detail Number: TFW-IF-01

THERMAL PERFORMANCE OF JUNCTION

Install insulation with a minimum R-value of 0.75 m²K/W around floor perimeter. ⚫

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

AIR BARRIER CONTINUITY

Seal the gap between the skirting board and the floor using a flexible sealant. ⚫

The dotted blue line depicts the continuity of the air barrier through the floor zone e.g solid nogging or header joist. ⚫

Seal all penetrations through air barrier using a flexible sealant or tape. ⚫

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

AIR BARRIER OPTIONS

- Internal lining (e.g. plasterboard)

GENERAL NOTES

- Cavity barriers to be installed as required.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

CHECKLIST (TICK)

- THERMAL PERFORMANCE OF JUNCTION
- AIR BARRIER CONTINUITY
- AIR BARRIER OPTIONS

GENERAL NOTES

- Cavity barriers to be installed as required.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

GENERAL NOTES
- Cavity barriers to be installed as required.
- Refer to Approved Document B for fire safety requirements and to Approved Document E for sound insulation requirements.
- This detail to be read in conjunction with detail No: TFW-IW-02.

CHECKLIST

<table>
<thead>
<tr>
<th>(TICK)</th>
<th>THERMAL PERFORMANCE OF JUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>Pack between external wall studs with suitable insulation. ①</td>
</tr>
<tr>
<td>☐</td>
<td>Ensure wall insulation is tucked into the corners studs.②</td>
</tr>
</tbody>
</table>

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

<table>
<thead>
<tr>
<th>(TICK)</th>
<th>AIR BARRIER CONTINUITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>Ensure air barrier continuity between internal linings at the corner. ③</td>
</tr>
<tr>
<td>☐</td>
<td>Seal all penetrations through air barrier using a flexible sealant or tape.</td>
</tr>
</tbody>
</table>

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

<table>
<thead>
<tr>
<th>(TICK)</th>
<th>AIR BARRIER OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>Internal lining (e.g. plasterboard)</td>
</tr>
</tbody>
</table>
Accredited (Indicative) Detail Number: TFW-IW-02

TFW-IW-02 Separating Wall Head.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

CHECKLIST (TICK)

THERMAL PERFORMANCE OF JUNCTION
- Pack compressible insulation between last truss/ joist and separating wall. ☐
- Pack compressible insulation between wall head members. ☐
- Ensure that the full depth of insulation between, over (or below) the joists extends to the face of the wall.

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

CHECKLIST (TICK)

AIR BARRIER CONTINUITY
- Ensure air barrier continuity between the ceiling and the wall linings. ☐
- Seal all penetrations through air barrier using a flexible sealant or tape.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

OPTION (TICK)

AIR BARRIER OPTIONS
- Internal lining (e.g. plasterboard)

GENERAL NOTES
- Cavity barriers to be installed as required.
- Refer to Approved Document B for fire safety requirements and to Approved Document E for sound insulation requirements.
- This detail to be read in conjunction with detail No: TFW-IW-01.

SITE MANAGER/ SUPERVISOR: SITE NAME: PLOT No: DATE:

CHECKLIST

(1) Pack compressible insulation between last truss/ joist and separating wall.
(2) Pack compressible insulation between wall head members.
(3) Ensure that the full depth of insulation between, over (or below) the joists extends to the face of the wall.

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

CHECKLIST

(1) Ensure air barrier continuity between the ceiling and the wall linings.
(2) Seal all penetrations through air barrier using a flexible sealant or tape.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

OPTION

(1) Internal lining (e.g. plasterboard)
Accredited (Indicative) Detail Number: TFW-IW-03

GENERAL NOTES

- This detail to be read in conjunction with detail No: TFW-IW-04.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

__CHECKLIST (TICK)__

<table>
<thead>
<tr>
<th>THERMAL PERFORMANCE OF JUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensure that insulation is tucked into the corner. ◐</td>
</tr>
</tbody>
</table>

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

<table>
<thead>
<tr>
<th>AIR BARRIER CONTINUITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>The dotted blue line depicts the continuity of the air barrier through the partition zone e.g. timber stud. ◐</td>
</tr>
<tr>
<td>Seal all penetrations through air barrier using a flexible sealant or tape.</td>
</tr>
</tbody>
</table>

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

<table>
<thead>
<tr>
<th>OPTION (TICK)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>AIR BARRIER OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal lining (e.g. plasterboard)</td>
</tr>
</tbody>
</table>

TFW-IW-03 Timber Stud Partition Wall/ External Wall Abutment.
Accredited (Indicative) Detail Number: TFW-IW-04

GENERAL NOTES
- This detail to be read in conjunction with detail No: TFW-IW-03.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

ACKNOWLEDGEMENTS

TFW-IW-04 Timber Stud Partition Wall Head.

CHECKLIST

- **THERMAL PERFORMANCE OF JUNCTION**
 - Ensure that the full depth of insulation between and over the joists extends over the head of the wall.
 - *Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.*

- **AIR BARRIER CONTINUITY**
 - The dotted blue line depicts the continuity of the air barrier through the partition zone e.g through top timber rail. 🙌
 - Seal all penetrations through air barrier using a flexible sealant or tape.
 - *Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.*

- **AIR BARRIER OPTIONS**
 - Ceiling lining (e.g. plasterboard)
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

CHECKLIST
(TICK)

THERMAL PERFORMANCE OF JUNCTION

☐ Ensure the gap between the wall plate and the proprietary eaves ventilator is completely filled with insulation having a min. R-value across the thickness of the insulation of 1.2 m².K/W. ☑

☐ Ensure continuity of the insulation throughout the junction.

☐ Ensure that the full depth of insulation between and over the joists abuts the eaves insulation.

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

CHECKLIST
(TICK)

AIR BARRIER CONTINUITY

☐ Ensure air barrier continuity between the ceiling and the wall linings ☑

☐ Seal all penetrations through air barrier using a flexible sealant or tape.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

OPTION
(TICK)

AIR BARRIER OPTIONS

☐ Internal lining (e.g. plasterboard)

GENERAL NOTES

- The use of over joist insulation is considered best practice as it eliminates the cold bridge caused by the joist.
- Use a proprietary eaves ventilator to ensure ventilation in accordance with BS5250.
- Cavity barriers to be installed as required.
- The installation of the eaves ventilator must not prevent free water drainage below the tiling battens.
- This detail to be read in conjunction with detail No: TFW-RG-01.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.
Accredited (Indicative) Detail Number: TFW-RE-02

GENERAL NOTES

- The use of over joist insulation is considered best practice as it eliminates the cold bridge caused by the joist.
- Vapour permeable roof underlay to be used in strict accordance with approved third party certification.
- Cavity barriers to be installed as required.
- The installation of the eaves insulation must not prevent free water drainage below the tiling battens.
- The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

CHECKLIST

THERMAL PERFORMANCE OF JUNCTION

- Ensure the gap between the wall plate and the proprietary eaves guard is completely filled with insulation having a min. R-value across the thickness of the insulation of 1.2 m².K/W. ☑
- Ensure continuity of the insulation throughout the junction.
- Ensure that the full depth of insulation between and over the joists abuts the eaves insulation.

 Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

CHECKLIST

AIR BARRIER CONTINUITY

- Ensure air barrier continuity between the ceiling and the wall linings. ☑
- Seal all penetrations through air barrier using a flexible sealant or tape.

 Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

OPTION

AIR BARRIER OPTIONS

- Internal lining (e.g. plasterboard)

SITE MANAGER/ SUPERVISOR:

SITE NAME:

PLOT No:

DATE:

Accredited (Indicative) Detail Number: TFW-RE-03

General Notes
- If required by BS5250 use a vapour control plasterboard or a separate vapour control layer behind the lining.
- Vapour permeable roof underlay to be used in strict accordance with approved third party certification.
- The use of over joist and under rafter insulation is considered best practice as it eliminates the cold bridge caused by the joist/rafter.
- Cavity barriers to be installed as required.
- The installation of the eaves insulation must not prevent free water drainage below the tiling battens.
- This detail to be read in conjunction with detail No: TFW-RG-02.

THERMAL PERFORMANCE OF JUNCTION
- Ensure the gap between the wall plate and the proprietary eaves guard is completely filled with insulation having a min. R-value across the thickness of the insulation of 1.2 m².K/W. ◊
- Ensure continuity of the insulation throughout the junction.
- Ensure that the full depth of insulation between and over the joists abuts the eaves insulation.
- Ensure that the insulation is installed tightly between the rafters and is in contact with the under rafter insulation. ◊

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

AIR BARRIER CONTINUITY
- Ensure air barrier continuity between the ceiling and the wall linings. ◊
- Seal all penetrations through air barrier using a flexible sealant or tape.
- Install a full depth timber nogging between the floor joists. ◊ The dotted blue line depicts the continuity of the air barrier e.g. through the noggings.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

AIR BARRIER OPTIONS
- Internal lining (e.g. plasterboard)

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

SITE MANAGER/ SUPERVISOR: ** | **SITE NAME: | **PLOT No:** | **DATE:**
GENERAL NOTES

If required by BS5250 use a vapour control plaster board or a separate vapour control layer behind the lining.

Vapour permeable roof underlay to be used in strict accordance with approved third party certification.

The use of over joist and under rafter insulation is considered best practice as it eliminates the cold bridge caused by the joist/rafter.

Cavity barriers to be installed as required.

The installation of the eaves insulation must not prevent free water drainage below the tiling battens.

This detail to be read in conjunction with detail No: TFW-RG-02.

THERMAL PERFORMANCE OF JUNCTION

Ensure the gap between the wall plate and the proprietary eaves guard is completely filled with insulation having a min. R-value across the thickness of the insulation of 1.2 m².K/W.

Ensure continuity of the insulation throughout the junction.

Ensure that the full depth of insulation between and under the rafters abuts the eaves insulation.

Ensure that the insulation is installed tightly between the rafters and is in contact with the under rafter insulation.

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

AIR BARRIER CONTINUITY

Ensure air barrier continuity between the ceiling and the wall linings.

Seal all penetrations through air barrier using a flexible sealant or tape.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

AIR BARRIER OPTIONS

Internal lining (e.g. plasterboard)

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

CHECKLIST

TICK

THERMAL PERFORMANCE OF JUNCTION

☐ Ensure the gap between the wall plate and the proprietary eaves guard is completely filled with insulation having a min. R-value across the thickness of the insulation of 1.2 m².K/W.

☐ Ensure continuity of the insulation throughout the junction.

☐ Ensure that the full depth of insulation between and under the rafters abuts the eaves insulation.

☐ Ensure that the insulation is installed tightly between the rafters and is in contact with the under rafter insulation.

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

AIR BARRIER CONTINUITY

☐ Ensure air barrier continuity between the ceiling and the wall linings.

☐ Seal all penetrations through air barrier using a flexible sealant or tape.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

AIR BARRIER OPTIONS

☐ Internal lining (e.g. plasterboard)

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

GENERAL NOTES

- Use a proprietary eaves ventilator to ensure ventilation in accordance with BS5250.
- If required by BS5250 use a vapour control plasterboard or a separate vapour control layer behind the lining.
- The use of over joist and under rafter insulation is considered best practice as it eliminates the cold bridge caused by the joist/rafter.
- Cavity barriers to be installed as required.
- The installation of the eaves insulation must not prevent free water drainage below the tiling battens.
- This detail to be read in conjunction with detail No: TFW-RG-03.

CHECKLIST

- **THERMAL PERFORMANCE OF JUNCTION**
 - Ensure the gap between the wall plate and the proprietary eaves ventilator is completely filled with insulation having a min. R-value across the thickness of the insulation of 1.2 m².K/W.
 - Ensure continuity of the insulation throughout the junction.
 - Ensure that the full depth of insulation between and over the joists abuts the eaves insulation.
 - Ensure that the insulation is installed tightly between the rafters and is in contact with the under rafter insulation.
 - Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

- **AIR BARRIER CONTINUITY**
 - Ensure air barrier continuity between the ceiling and the wall linings.
 - Seal all penetrations through air barrier using a flexible sealant or tape.
 - Install a full depth timber nogging between the floor joists. The dotted blue line depicts the continuity of the air barrier e.g. through the noggings.
 - Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

- **AIR BARRIER OPTIONS**
 - Internal lining (e.g. plasterboard)

CHECKLIST

- **OPTION**
 - Complying with the above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

SITE MANAGER/ SUPERVISOR:

SITE NAME:

PLOT No:

DATE:

Timber Frame
Accredited (Indicative) Detail Number: TFW-RE-06

THERMAL PERFORMANCE OF JUNCTION

Ensure the gap between the wall plate and the proprietary eaves ventilator is completely filled with insulation having a min. R-value across the thickness of the insulation of 1.2 m².K/W. ☑
Ensure continuity of the insulation throughout the junction.
Ensure that the full depth of insulation between and under the rafters abuts the eaves insulation.
Ensure that the insulation is installed tightly between the rafters and is in contact with the under rafter insulation. ☑
Complying with the above checklist items qualifies the builder to claim the \(\Psi \) value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

AIR BARRIER CONTINUITY

Ensure air barrier continuity between the ceiling and the wall linings. ☑
Seal all penetrations through air barrier using a flexible sealant or tape.
Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

AIR BARRIER OPTIONS

Internal lining (e.g. plasterboard)

GENERAL NOTES

- If required by BS5250 use a vapour control plaster board or a separate vapour control layer behind the lining.
- Use a proprietary eaves ventilator to ensure ventilation in accordance with BS5250.
- The use of over joist and under rafter insulation is considered best practice as it eliminates the cold bridge caused by the joist/rafter.
- Cavity barriers to be installed as required.
- The installation of the eaves ventilator must not prevent free water drainage below the tiling battens.
- This detail to be read in conjunction with detail No: TFW-RG-03.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

<table>
<thead>
<tr>
<th>SITE MANAGER/ SUPERVISOR:</th>
<th>SITE NAME:</th>
<th>PLOT No:</th>
<th>DATE:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

CHECKLIST (TICK)

THERMAL PERFORMANCE OF JUNCTION
- Ensure the gap between the wall plate and the proprietary eaves guard is completely filled with insulation having a min. R-value across the thickness of the insulation of 1.2 m².K/W. ☑
- Ensure continuity of the insulation throughout the junction.
- Ensure that the full depth of insulation between and over the rafters abuts the eaves insulation.
- Ensure that the insulation is installed tightly between the rafters and is in contact with the over rafter insulation. ☑
- Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

CHECKLIST (TICK)

AIR BARRIER CONTINUITY
- Ensure air barrier continuity between the ceiling and the wall plasterboard. ☑
- Seal all penetrations through air barrier using a flexible sealant or tape.
- Install a full depth timber nogging between the floor joists. ☑ The dotted blue line depicts the continuity of the air barrier e.g. through the noggings.
- Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

OPTION (TICK)

AIR BARRIER OPTIONS
- Internal lining (e.g. plasterboard)

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

GENERAL NOTES
- If required by BS5250 use a vapour control plaster board or a separate vapour control layer behind the linings.
- Vapour permeable roof underlay to be used in strict accordance with approved third party certification.
- The use of over rafter insulation is considered best practice as it eliminates the cold bridge caused by the rafter.
- Cavity barriers to be installed as required.
- This detail to be read in conjunction with detail No: TFW-RG-04.

TFW-RE-07 Pitched Roof. Between & Over Rafter Insulation. Eaves

SITE MANAGER/ SUPERVISOR:

SITE NAME:

PLOT No:

DATE:
Accredited (Indicative) Detail Number: TFW-RE-08

THERMAL PERFORMANCE OF JUNCTION

☐ Ensure the gap between the wall plate and the proprietary eaves guard is completely filled with insulation having a min. R-value across the thickness of the insulation of 1.2 m².K/W.

☐ Ensure continuity of the insulation throughout the junction.

☐ Ensure that the full depth of insulation between and over the rafters abuts the eaves insulation.

☐ Ensure that the insulation is installed tightly between the rafters and is in contact with the under rafter insulation.

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

AIR BARRIER CONTINUITY

☐ Ensure air barrier continuity between the ceiling and the wall linings.

☐ Seal all penetrations through air barrier using a flexible sealant or tape.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

AIR BARRIER OPTIONS

☐ Internal lining (e.g. plasterboard)

GENERAL NOTES

• If required by BS5250 use a vapour control plasterboard or a separate vapour control layer behind the linings.

• Vapour permeable roof underlay to be used in strict accordance with approved third party certification.

• The use of over rafter/joist insulation is considered best practice as it eliminates the cold bridge caused by the rafter/joist.

• Cavity barriers to be installed as required.

• This detail to be read in conjunction with detail No: TFW-RG-04.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

GENERAL NOTES

- BS5250 requires a vapour control layer to be installed between the deck and insulation.
- Turn up vapour control layer at edge of roof insulation, lap with roof waterproofing layer, and seal. ①
- Cavity barriers to be installed as required.

THERMAL PERFORMANCE OF JUNCTION

- Ensure that the wall insulation is installed level with or above the top of the roof insulation. ①
- Ensure that the roof insulation tightly abuts the inner face of the parapet wall. ②

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

AIR BARRIER CONTINUITY

- Ensure air barrier continuity between the ceiling and the wall linings. ①
- Seal all penetrations through air barrier using a flexible sealant or tape.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

AIR BARRIER OPTIONS

- Internal lining (e.g. plasterboard)
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

GENERAL NOTES
- The use of over joist insulation is considered best practice as it eliminates the cold bridge caused by the joist.
- Cavity barriers to be installed as required.
- This detail to be read in conjunction with detail Nos: TFW-RE-01 or TFW-RE-02.

CHECKLIST

THERMAL PERFORMANCE OF JUNCTION
- Continue loft insulation over head of main wall panel to sheathing board.
- Ensure that the full depth of insulation between and over the joists extends to the inner edge of the wall.

 Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

AIR BARRIER CONTINUITY
- Ensure air barrier continuity between the ceiling and the wall lining.

 Seal all penetrations through air barrier using a flexible sealant or tape.

 Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

OPTION

AIR BARRIER OPTIONS
- Internal lining (e.g. plasterboard)
Accredited (Indicative) Detail Number: TFW-RG-02

THERMAL PERFORMANCE OF JUNCTION

- Ensure that the wall insulation is taken up level with top of wall.
- Ensure that the full depth of insulation between and under the rafters extends to the wall.
- Ensure that the insulation is installed tightly between the rafters and is in contact with the under rafter insulation.

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

AIR BARRIER CONTINUITY

- Ensure air barrier continuity between the ceiling and the wall linings.
- Seal all penetrations through air barrier using a flexible sealant or tape.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

AIR BARRIER OPTIONS

- Internal lining (e.g. plasterboard)

GENERAL NOTES

- If required by BS5250 use a vapour control plasterboard or a separate vapour control layer behind the lining.
- Vapour permeable roof underlay to be used in strict accordance with approved third party certification.
- Cavity barriers to be installed as required.
- This detail to be read in conjunction with detail No: TFW-RE-03 or TFW-RE-04.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.
Accredited (Indicative) Detail Number: TFW-RG-04

THERMAL PERFORMANCE OF JUNCTION

- Ensure that the wall insulation is taken up level with top of wall.
- Ensure that the full depth of insulation between and over the rafters extends to the wall.
- Ensure that the insulation is installed tightly between the rafters and is in contact with the over rafter insulation.

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

AIR BARRIER CONTINUITY

- Ensure air barrier continuity between the ceiling and the wall lining.
- Seal all penetrations through air barrier using a flexible sealant or tape.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

AIR BARRIER OPTIONS

- Internal lining (e.g. plasterboard)

GENERAL NOTES

- If required by BS5250 use a vapour control plasterboard or a separate vapour control layer behind the linings.
- Vapour permeable roof underlay to be used in strict accordance with approved third party certification.
- The use of over rafter insulation is considered best practice as it eliminates the cold bridge caused by the rafter.
- Cavity barriers to be installed as required.
- This detail to be read in conjunction with detail No: TFW-RE-07 or TFW-RE-08.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

THERMAL PERFORMANCE OF JUNCTION
- Install a proprietary cavity closer having a path of minimum thermal resistance path through the closer of not less than 0.45 m²K/W (manufacturers certified data) **OR** a treated timber batten. ⊗
- Minimum frame overlap to be 30mm ⊗

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

AIR BARRIER CONTINUITY
- Flexible sealant should be applied to the junction between the plasterboard and the window/door frame members. ⊗
- Seal all penetrations through air barrier using a flexible sealant or tape.
- Apply external flexible seal around frame.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

AIR BARRIER OPTIONS
- Internal lining (e.g. plasterboard)

GENERAL NOTES
- Ensure that vapour control layer or vapour control plasterboard is returned into reveal.

CHECKLIST

<table>
<thead>
<tr>
<th>(TICK)</th>
<th>THERMAL PERFORMANCE OF JUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Install a proprietary cavity closer having a path of minimum thermal resistance path through the closer of not less than 0.45 m²K/W (manufacturers certified data) OR a treated timber batten.</td>
</tr>
<tr>
<td></td>
<td>Minimum frame overlap to be 30mm</td>
</tr>
</tbody>
</table>

CHECKLIST

<table>
<thead>
<tr>
<th>(TICK)</th>
<th>AIR BARRIER CONTINUITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Flexible sealant should be applied to the junction between the plasterboard and the window/door frame members.</td>
</tr>
<tr>
<td></td>
<td>Seal all penetrations through air barrier using a flexible sealant or tape.</td>
</tr>
<tr>
<td></td>
<td>Apply external flexible seal around frame.</td>
</tr>
</tbody>
</table>

OPTION

<table>
<thead>
<tr>
<th>(TICK)</th>
<th>AIR BARRIER OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Internal lining (e.g. plasterboard)</td>
</tr>
</tbody>
</table>

SITE MANAGER/ SUPERVISOR:

SITE NAME:

PLOT No:

DATE:
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.
Accredited (Indicative) Detail Number: TFW-WD-03

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

GENERAL NOTES

- Ensure that vapour control layer or vapour control plasterboard is returned into reveal.

CHECKLIST (TICK)

THERMAL PERFORMANCE OF JUNCTION

☐ Install a proprietary cavity closer having a path of minimum thermal resistance path through the closer of not less than 0.45 m²K/W (manufacturers certified data).

☐ Minimum frame overlap to be 30mm

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

CHECKLIST (TICK)

AIR BARRIER CONTINUITY

☐ Flexible sealant should be applied to the junction between the lining and the window/door frame members.

☐ Seal all penetrations through air barrier using a flexible sealant or tape.

☐ Apply external flexible seal around frame.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

OPTION (TICK)

AIR BARRIER OPTIONS

☐ Internal lining (e.g. plasterboard)

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.