The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

GENERAL NOTES

SITE MANAGER/ SUPERVISOR:
SITE NAME:
PLOT No:
DATE:

THERMAL PERFORMANCE OF JUNCTION

- Floor insulation must tightly abut the block work wall.
- Inject insulating expanding foam between the insulated dry-lining and the floor insulation/timber floor finish.

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

AIR BARRIER CONTINUITY

- Seal the gap between the skirting board and the floor using a flexible sealant.
- Seal all penetrations through air barrier using a flexible sealant.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

AIR BARRIER OPTIONS

- Blockwork inner leaf/parging coat applied to internal face of inner leaf with insulated dry-lining on dabs or mechanically fixed over,
- Insulated dry-lining on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

MII-GF-01 Ground Bearing Floor/ Raft Foundation/ In-situ Suspended Ground Floor Slab/ Pre-cast Suspended Ground Floor. Insulation above Slab with Timber Floor Finish.

Masonry Internal Wall Insulation
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

GENERAL NOTES

THERMAL PERFORMANCE OF JUNCTION

- Install perimeter wall insulation having a minimum R-value of 0.75 m²·K/W. ☑
- Ensure continuity between below slab insulation and perimeter insulation.
- Floor insulation must tightly abut the blockwork wall. ☑
- Inject insulating expanding foam between the insulated dry-lining and the floor screed. ☑

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

AIR BARRIER CONTINUITY

- Seal the gap between the skirting board and the floor using a flexible sealant. ☑
- Seal all penetrations through air barrier using a flexible sealant.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

AIR BARRIER OPTIONS

- Blockwork inner leaf/parging coat applied to internal face of inner leaf with insulated dry-lining on dabs or mechanically fixed over, or
- Insulated dry-lining on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

CHECKLIST (TICK)

<table>
<thead>
<tr>
<th>Site Manager/ Supervisor</th>
<th>Site Name</th>
<th>Plot No</th>
<th>Date</th>
<th>MII-GF-02 Ground Bearing Floor/ Raft Foundation/ In-situ Suspended Ground Floor Slab/ Pre-cast Suspended Ground Floor/Concrete and Screed. Insulation Below Slab.</th>
<th>Masonry Internal Wall Insulation</th>
<th>GENERAL NOTES</th>
</tr>
</thead>
</table>
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.
MII-IF-01 Concrete Intermediate Floor.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

CHECKLIST

THERMAL PERFORMANCE OF JUNCTION

☐ Place insulation having a minimum R-Value of 1.25m².K/W in cavity projecting a minimum of 100mm above and below the floor zone.①

☐ Use insulating blocks for whole of inner leaf (thermal insulation less than or equal to 0.2W/mK).

☐ Inject insulating expanding foam between the insulated dry-lining and the floor insulation/timber floor finish.②

☐ Ensure that insulated dry-lining tightly abuts the underside of the floor slab.③

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

CHECKLIST

AIR BARRIER CONTINUITY

☐ Ensure a continuous mortar bed between floor slab and top of blockwork wall.

☐ Seal the gap between the skirting board and floor ⑤ and between the head of the insulated dry-lining and the underside of the floor slab with a flexible sealant.⑥ (The dotted blue line depicts the continuity of the air barrier through the floor zone)

☐ Seal all penetrations through air barrier using a flexible sealant.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

OPTION

AIR BARRIER OPTIONS

☐ Blockwork inner leaf/parging coat applied to internal face of inner leaf with insulated dry-lining on dabs or mechanically fixed over, or

☐ Insulated dry-lining on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

GENERAL NOTES

- This detail is diagrammatic only. Where the floor is a separating floor, this would normally have an acoustic ceiling and further treatments would be provided. See requirements of Approved Document E.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.
General Notes

- Suspended timber floors may be laid in joist hangers rather than built-in.
- For timber engineered joists, proprietary filler pieces must be fitted on both sides of the web between the top and bottom flanges. (See manufactures details.)

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.
Accredited (Indicative) Detail Number: MII-IW-01

MII-IW-01 Masonry Separating Wall/ External Wall Abutment.

THERMAL PERFORMANCE OF JUNCTION

The cavity insulation barrier must be a minimum of 260mm wide or the width of the division wall, whichever is the greater.

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

AIR BARRIER CONTINUITY

Fix insulated plasterboard to external wall first and seal all gaps between the board and internal division wall with either adhesive or flexible sealant.

Seal all penetrations through air barrier using a flexible sealant.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

AIR BARRIER OPTIONS

Blockwork inner leaf/parging coat applied to internal face of inner leaf with insulated dry-lining on dabs or mechanically fixed over, or

Insulated dry-lining on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

GENERAL NOTES

- Refer to Approved Document B for fire safety requirements and to Approved Document E for sound insulation requirements.
- This detail to be read in conjunction with detail No: MII-IW-02.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

SITE MANAGER/ SUPERVISOR: SITE NAME: PLOT No: DATE:
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

GENERAL NOTES

- Refer to Approved Document B for fire safety requirements and to Approved Document E for sound insulation requirements.
- This detail to be read in conjunction with detail No: MII-IW-01.
Accredited (Indicative) Detail Number: MII-IW-03

MII-IW-03 Masonry Partition Wall/ External Wall Abutment.

Masonry Internal Wall Insulation

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

GENERAL NOTES

- This detail to be read in conjunction with detail No: MII-IW-04.

CHECKLIST

- **THERMAL PERFORMANCE OF JUNCTION**
 - Install cavity barrier minimum 260mm wide or the width of the wall whichever is greater.
 - Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

- **AIR BARRIER CONTINUITY**
 - Fix insulated plasterboard to external wall first and seal all gaps between the board and the masonry partition wall with either adhesive or flexible sealant.
 - Seal all penetrations through air barrier using a flexible sealant.
 - Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

- **AIR BARRIER OPTIONS**
 - Blockwork inner leaf/parging coat applied to internal face of inner leaf with insulated dry-lining on dabs or mechanically fixed over
 - Insulated dry-lining on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

SITE MANAGER/ SUPERVISOR:

SITE NAME:

PLOT No:

DATE:
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

GENERAL NOTES

- This detail to be read in conjunction with detail No: MII-IW-06.

THERMAL PERFORMANCE OF JUNCTION

Install insulation having a minimum R-value of 0.75 m².K/W between the wall and partition stud. ☑

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

AIR BARRIER CONTINUITY

- Fix partition lining first and seal all gaps between lining and inner leaf of cavity with flexible sealant. ☑ (The dotted blue line depicts the continuity of the air barrier through the partition zone)
- Seal between insulated dry lining and partition linings. ☑
- Seal all penetrations through air barrier using a flexible sealant.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

AIR BARRIER OPTIONS

- Blockwork inner leaf/parging coat applied to internal face of inner leaf with insulated dry-lining on dabs or mechanically fixed over, or
- Insulated dry-lining on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

CHECKLIST

- [] THERMAL PERFORMANCE OF JUNCTION
- [] AIR BARRIER CONTINUITY
- [] AIR BARRIER OPTIONS

SITE MANAGER/ SUPERVISOR:

SITE NAME:

PLOT No:

DATE:

MII-IW-05 Timber Stud Partition Wall/ External Wall Abutment.

Masonry Internal Wall Insulation
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

MII-IW-06 Timber Stud Partition Wall Head.

CHECKLIST

- THERMAL PERFORMANCE OF JUNCTION
 - Ensure that the full depth of insulation between and over the joists extends over the head of the wall.

 Complying with the above checklist items qualifies the builder to claim the \(\Psi \) value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

- AIR BARRIER CONTINUITY
 - Fix ceiling first and seal all gaps between the ceiling and head member of partition with flexible sealant prior to installing partition linings. (The dotted blue line depicts the continuity of the air barrier through the head stud member)

 Seal all penetrations through air barrier using a flexible sealant.

 Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

- AIR BARRIER OPTIONS
 - Plasterboard ceiling.

GENERAL NOTES

- This detail to be read in conjunction with detail No: MII-IW-05.
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

GENERAL NOTES

- This detail to be read in conjunction with detail No: MII-IW-08.

SITE MANAGER/ SUPERVISOR: [Insert Name]
SITE NAME: [Insert Name]
PLOT No: [Insert Number]
DATE: [Insert Date]
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

THERMAL PERFORMANCE OF JUNCTION
- Ensure that the full depth of insulation between and over the joists extends over the head of the wall.

 Complying with the above checklist items qualifies the builder to claim the U value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

AIR BARRIER CONTINUITY
- Fix timber head plate to underside of joists to receive metal channel. ①
- Fix ceiling first and seal all gaps between the ceiling and timber head plate with flexible sealant prior to installing partition linings. ② (The dotted blue line depicts the continuity of the air barrier through the partition head plate)
- Seal all penetrations through air barrier using a flexible sealant.

 Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

AIR BARRIER OPTIONS
- Plasterboard ceiling.

CHECKLIST (TICK)

THERMAL PERFORMANCE OF JUNCTION
- Ensure that the full depth of insulation between and over the joists extends over the head of the wall.

 Complying with the above checklist items qualifies the builder to claim the U value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

AIR BARRIER CONTINUITY
- Fix timber head plate to underside of joists to receive metal channel. ①
- Fix ceiling first and seal all gaps between the ceiling and timber head plate with flexible sealant prior to installing partition linings. ② (The dotted blue line depicts the continuity of the air barrier through the partition head plate)
- Seal all penetrations through air barrier using a flexible sealant.

 Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

AIR BARRIER OPTIONS
- Plasterboard ceiling.

GENERAL NOTES
- This detail to be read in conjunction with detail No: MII-IW-07.
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

Masonry Internal Wall Insulation

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

GENERAL NOTES

- The use of over joist insulation is considered best practice as it eliminates the cold bridge caused by the joist.
- Vapour permeable roof underlay to be used in strict accordance with approved third party certification.
- The installation of the eaves insulation must not prevent free water drainage below the tiling battens.
- This detail to be read in conjunction with detail No: MII-RG-02.

THERMAL PERFORMANCE OF JUNCTION

- Ensure the gap between the wall plate and the proprietary eaves ventilator is completely filled with insulation having a min. R-value across the thickness of the insulation of 1.2 m².K/W. ①
- Ensure continuity of the insulation throughout the junction.
- Ensure that the full depth of insulation between and over the joists abuts the eaves insulation.
- Ensure that insulated dry-lining tightly abuts the underside of the ceiling. ②

Complying with the above checklist items qualifies the builder to claim the $ value given in Table 3 of IP 1:06 and Table K1 of SAP 2005.

AIR BARRIER CONTINUITY

- Bed the wall plate on a continuous mortar bed.
- Fix ceiling first and seal all gaps between the ceiling and masonry wall with either adhesive or flexible sealant. ③
- Seal all penetrations through air barrier using a flexible sealant.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

AIR BARRIER OPTIONS

- Blockwork inner leaf/parging coat applied to internal face of inner leaf with insulated dry-lining on dabs or mechanically fixed over, or
- Insulated dry-lining on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.
Accredited (Indicative) Detail Number: MII-RE-03

THERMAL PERFORMANCE OF JUNCTION

- Ensure the gap between the wall plate and the proprietary eaves ventilator is completely filled with insulation having a min. R-value across the thickness of the insulation of 1.2 m².K/W.
- Ensure continuity of the insulation throughout the junction.
- Ensure that the full depth of insulation between and over the joists abuts the eaves insulation.
- Ensure that the insulation is installed tightly between the rafters and is in contact with the under rafter insulation.
- Ensure that insulated dry-lining tightly abuts the underside of the ceiling.

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

AIR BARRIER CONTINUITY

- Bed the wall plate on a continuous mortar bed.
- Fix ceiling first and seal all gaps between the ceiling and masonry wall with either adhesive or flexible sealant.
- Seal all penetrations through air barrier using a flexible sealant.
- Install a double, full depth timber nogging between the floor joists and seal between the nogging, ceiling and upper stud wall with a flexible sealant. (The dotted blue line depicts the continuity of the air barrier through the noggings)

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

AIR BARRIER OPTIONS

- Blockwork inner leaf/parging coat applied to internal face of inner leaf with insulated dry-lining on dabs or mechanically fixed over, or
- Insulated dry-lining on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

GENERAL NOTES

- If required by BS5250 use a vapour control plasterboard or a separate vapour control layer behind the plasterboard.
- Vapour permeable roof underlay to be used in strict accordance with approved third party certification.
- The use of over joist and under rafter insulation is considered best practice as it eliminates the cold bridge caused by the joist/rafter.
- The installation of the eaves insulation must not prevent free water drainage below the tiling battens.
- This detail to be read in conjunction with detail No: MII-RG-02.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

Masonry Internal Wall Insulation

Accredited (Indicative) Detail Number: MII-RE-04

GENERAL NOTES

- If required by BS5250 use a vapour control plasterboard or a separate vapour control layer behind the plasterboard.
- Vapour permeable roof underlay to be used in strict accordance with approved third party certification.
- The use of over joist and under rafter insulation is considered best practice as it eliminates the cold bridge caused by the joist/rafter.
- The installation of the eaves insulation must not prevent free water drainage below the tiling battens.
- This detail to be read in conjunction with detail No: MII-RG-02.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

<table>
<thead>
<tr>
<th>THERMAL PERFORMANCE OF JUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Ensure the gap between the wall plate and the proprietary eaves ventilator is completely filled with insulation having a min. R-value across the thickness of the insulation of 1.2 m².K/W. ①</td>
</tr>
<tr>
<td>□ Ensure continuity of the insulation throughout the junction.</td>
</tr>
<tr>
<td>□ Ensure that the full depth of insulation between and under the rafters abuts the eaves insulation.</td>
</tr>
<tr>
<td>□ Ensure that the insulation is installed tightly between the rafters and is in contact with the under rafter insulation. ②</td>
</tr>
<tr>
<td>□ Ensure that insulated dry-lining tightly abuts the underside of the ceiling. ③</td>
</tr>
</tbody>
</table>

Complying with the above checklist items qualifies the builder to claim the Y value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

<table>
<thead>
<tr>
<th>AIR BARRIER CONTINUITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Bed the wall plate on a continuous mortar bed.</td>
</tr>
<tr>
<td>□ Fix ceiling first and seal all gaps between the ceiling and masonry wall with either adhesive or flexible sealant. ⑤</td>
</tr>
<tr>
<td>□ Seal all penetrations through air barrier using a flexible sealant.</td>
</tr>
</tbody>
</table>

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

<table>
<thead>
<tr>
<th>AIR BARRIER OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Blockwork inner leaf/parging coat applied to internal face of inner leaf with insulated dry-lining on dabs or mechanically fixed over, or</td>
</tr>
<tr>
<td>□ Insulated dry-lining on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.</td>
</tr>
</tbody>
</table>

CHECKLIST

| CHECKLIST (TICK) |

| SITE MANAGER/ SUPERVISOR: | SITE NAME: | PLOT No: | DATE: |

Masonry Internal Wall Insulation
GENERAL NOTES

- Use a proprietary eaves ventilator to ensure ventilation in accordance with BS5250.
- If required by BS5250 use a vapour control plasterboard or a separate vapour control layer behind the plasterboard.
- The use of over joist and under rafter insulation is considered best practice as it eliminates the cold bridge caused by the joist/rafter.
- The installation of the eaves insulation must not prevent free water drainage below the tiling battens.
- This detail to be read in conjunction with detail No: MII-RG-03.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

Masonry Internal Wall Insulation
MII-RE-06 Pitched Roof. Between & Under Rafter Insulation.

Ventilated Rafter Void. Storey and a Half.

GENERAL NOTES

- If required by BS5250 use a vapour control plasterboard or a separate vapour control layer behind the plasterboard.
- Use a proprietary eaves ventilator to ensure ventilation in accordance with BS5250.
- The use of over joist and under rafter insulation is considered best practice as it eliminates the cold bridge caused by the joist/rafter.
- The installation of the eaves ventilator must not prevent free water drainage below the tiling battens.
- This detail to be read in conjunction with detail No: MII-RG-03.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

CHECKLIST

THERMAL PERFORMANCE OF JUNCTION

- Ensure the gap between the wall plate and the proprietary eaves ventilator is completely filled with insulation having a min. R-value across the thickness of the insulation of 1.2 m².K/W. ☑️
- Ensure continuity of the insulation throughout the junction.
- Ensure that the full depth of insulation between and under the rafters abuts the eaves insulation.
- Ensure that the insulation is installed tightly between the rafters and is in contact with the under rafter insulation. ☑️
- Ensure that insulated dry-lining tightly abuts the underside of the ceiling. ☑️

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

CHECKLIST

AIR BARRIER CONTINUITY

- Bed the wall plate on a continuous mortar bed.
- Fix ceiling first and seal all gaps between the ceiling and masonry wall with either adhesive or flexible sealant. ☑️
- Seal all penetrations through air barrier using a flexible sealant. ☑️

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

OPTION

AIR BARRIER OPTIONS

- Blockwork inner leaf/parging coat applied to internal face of inner leaf with insulated dry-lining on dabs or mechanically fixed over, or
- Insulated dry-lining on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

SITE MANAGER/ SUPERVISOR:

SITE NAME:

PLOT No:

DATE:

Masonry Internal Wall Insulation
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

GENERAL NOTES

- If required by BS5250 use a vapour control plasterboard or a separate vapour control layer behind the plasterboard.
- Vapour permeable roof underlay to be used in strict accordance with approved third party certification.
- The use of over rafter insulation is considered best practice as it eliminates the cold bridge caused by the rafter.
- This detail to be read in conjunction with detail No: MII-RG-04.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

Masonry Internal Wall Insulation

GENERAL NOTES

- If required by BS5250 use a vapour control plasterboard or a separate vapour control layer behind the plasterboard.
- Vapour permeable roof underlay to be used in strict accordance with approved third party certification.
- The use of over rafter/joist insulation is considered best practice as it eliminates the cold bridge caused by the rafter/joist.
- This detail to be read in conjunction with detail No: MII-RG-04.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

CHECKLIST (TICK)

THERMAL PERFORMANCE OF JUNCTION

- Ensure the gap between the wall plate and the proprietary eaves ventilator is completely filled with insulation having a min. R-value across the thickness of the insulation of 1.2 m².K/W. ☑
- Ensure continuity of the insulation throughout the junction.
- Ensure that the full depth of insulation between and over the rafters abuts the eaves insulation.
- Ensure that the insulation is installed tightly between the rafters and is in contact with the over rafter insulation. ☑
- Ensure that insulated dry-lining tightly abuts the underside of the ceiling. ☑

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

AIR BARRIER CONTINUITY

- Bed the wall plate on a continuous mortar bed.
- Fix ceiling first and seal all gaps between the ceiling and masonry wall with either adhesive or flexible sealant. ☑
- Seal all penetrations through air barrier using a flexible sealant.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

AIR BARRIER OPTIONS

- Blockwork inner leaf/parging coat applied to internal face of inner leaf with insulated dry-lining on dabs or mechanically fixed over, or
- Insulated dry-lining on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.
MII-RF-01 Timber Flat Roof with Overhanging Eaves and Verge.

Accredited (Indicative) Detail Number: MII-RF-01

MII-RF-01 Masonry Internal Wall Insulation

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

GENERAL NOTES

- BS5250 requires a vapour control layer to be installed between the deck and insulation.
- Vapour control layer turned up edge of roof insulation, lapped with roof waterproofing layer and sealed. Ensure compatible materials are used during construction.

CHECKLIST (TICK)

<table>
<thead>
<tr>
<th>THERMAL PERFORMANCE OF JUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Tightly pack compressible insulation into the void between top of wall and underside of the roof deck.</td>
</tr>
<tr>
<td>□ Ensure that the full depth of over roof insulation over the joists extends to the edge of the roof.</td>
</tr>
<tr>
<td>□ Ensure that insulated dry-lining tightly abuts the underside of the ceiling.</td>
</tr>
</tbody>
</table>

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

CHECKLIST (TICK)

<table>
<thead>
<tr>
<th>AIR BARRIER CONTINUITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Fix ceiling first and seal all gaps between the ceiling and masonry wall with either adhesive or flexible sealant.</td>
</tr>
<tr>
<td>□ Seal all penetrations through air barrier using a flexible sealant.</td>
</tr>
</tbody>
</table>

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

OPTION (TICK)

<table>
<thead>
<tr>
<th>AIR BARRIER OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Blockwork inner leaf/parging coat applied to internal face of inner leaf with insulated dry-lining on dabs or mechanically fixed over, or</td>
</tr>
<tr>
<td>□ Insulated dry-lining on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.</td>
</tr>
</tbody>
</table>

SITE MANAGER/ SUPERVISOR: SITE NAME: PLOT No: DATE:
MII-RF-02 Timber Flat Roof with Parapet.

Masonry Internal Wall Insulation

Accredited (Indicative) Detail Number: MII-RF-02

CHECKLIST (TICK)

THERMAL PERFORMANCE OF JUNCTION

☐ Ensure that the roof insulation tightly abuts the inner face of the parapet wall. ☐

☐ Install insulation having a minimum R-value of 0.75 m².K/W against the wall held in place by a joist (verge) or battens (eaves). ☐

☐ Ensure that insulated dry-lining tightly abuts the underside of the ceiling. ☐

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

CHECKLIST (TICK)

AIR BARRIER CONTINUITY

☐ Fix ceiling first and seal all gaps between the ceiling and masonry wall with either adhesive or flexible sealant. ☐

☐ Seal all penetrations through air barrier using a flexible sealant.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

OPTION (TICK)

AIR BARRIER OPTIONS

☐ Blockwork inner leaf/parging coat applied to internal face of inner leaf with insulated dry-lining on dabs or mechanically fixed over, or

☐ Insulated dry-lining on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

GENERAL NOTES

- BS5250 requires a vapour control layer to be installed between the deck and insulation.
- Turn up vapour control layer at edge of roof insulation, lap with roof waterproofing layer, and seal.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

SITE MANAGER/ SUPERVISOR: SITE NAME:

PLOT No: DATE:

VERSION 1.0
Accredited (Indicative) Detail Number: MII-RG-01

MII-RG-01 Pitched Roof. Ventilated & Unventilated Loft. Gable.

Masonry Internal Wall Insulation

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

GENERAL NOTES

- The use of over joist insulation is considered best practice as it eliminates the cold bridge caused by the joist.
- This detail to be read in conjunction with detail Nos: MII-RE-01 or MII-RE-02.

CHECKLIST

<table>
<thead>
<tr>
<th>CHECKLIST (TICK)</th>
<th>THERMAL PERFORMANCE OF JUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pack compressible insulation between last truss/joist and gable wall.</td>
</tr>
<tr>
<td></td>
<td>Ensure that the full depth of insulation between and over the joists extends to the inner edge of the wall.</td>
</tr>
<tr>
<td></td>
<td>Ensure that insulated dry-lining tightly abuts the underside of the ceiling.</td>
</tr>
<tr>
<td></td>
<td>Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHECKLIST (TICK)</th>
<th>AIR BARRIER CONTINUITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fix ceiling first and seal all gaps between the ceiling and masonry wall with either adhesive or flexible sealant.</td>
</tr>
<tr>
<td></td>
<td>Seal all penetrations through air barrier using a flexible sealant.</td>
</tr>
<tr>
<td></td>
<td>Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OPTION (TICK)</th>
<th>AIR BARRIER OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Blockwork inner leaf/parging coat applied to internal face of inner leaf with insulated dry-lining on dabs or mechanically fixed over</td>
</tr>
<tr>
<td></td>
<td>Insulated dry-lining on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.</td>
</tr>
</tbody>
</table>

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

GENERAL NOTES
- If required by BS5250 use a vapour control plasterboard or a separate vapour control layer behind the plasterboard.
- Vapour permeable roof underlay to be used in strict accordance with approved third party certification.
- This detail to be read in conjunction with detail No’s: MII-RE-03 or MII-RE-04.

SITE MANAGER/ SUPERVISOR:

SITE NAME:

PLOT No:

DATE:

MII-RG-02 Pitched Roof. Between & Under Rafter Insulation.

Unventilated Rafter Void. Gable.

Masonry Internal Wall Insulation
Accredited (Indicative) Detail Number: MII-RG-03

Masonry Internal Wall Insulation

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

CHECKLIST

(TICK)

THERMAL PERFORMANCE OF JUNCTION

☐ Ensure the top of wall is levelled with mortar to the correct pitch.

☐ Ensure continuity of the insulation throughout the junction.

☐ Fit the insulation over the top of the wall within the gable ladder. Fully fill the void unless the roof underlay requires to be draped when a 25mm void must be maintained.

☐ Ensure that the full depth of insulation between and under the rafters extends to the wall. Pack the gap between rafter and wall with compressible insulation.

☐ Ensure that the insulation is installed tightly between the rafters and is in contact with the under rafter insulation.

☐ Ensure that insulated dry-lining tightly abuts the underside of the ceiling.

Complying with the above checklist items qualifies the builder to claim the value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

CHECKLIST

(TICK)

AIR BARRIER CONTINUITY

☐ Fix ceiling first and seal all gaps between the ceiling and masonry wall with either adhesive or flexible sealant.

☐ Seal all penetrations through air barrier using a flexible sealant.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

OPTION

(TICK)

AIR BARRIER OPTIONS

☐ Blockwork inner leaf/parging coat applied to internal face of inner leaf with insulated dry-lining on dabs or mechanically fixed over, or

☐ Insulated dry-lining on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

GENERAL NOTES

- If required by BS5250 use a vapour control plasterboard or a separate vapour control layer behind the plasterboard.
- The use of under rafter insulation is considered best practice as it eliminates the cold bridge caused by the rafter.
- Ensure ventilation to roof build-up in accordance with BS5250.
- This detail to be read in conjunction with detail No’s: MII-RE-05 or MII-RE-06.

- If required by BS5250 use a vapour control plasterboard or a separate vapour control layer behind the plasterboard.
- The use of under rafter insulation is considered best practice as it eliminates the cold bridge caused by the rafter.
- Ensure ventilation to roof build-up in accordance with BS5250.
- This detail to be read in conjunction with detail No’s: MII-RE-05 or MII-RE-06.

- Ensure that insulated dry-lining tightly abuts the underside of the ceiling.
- Ensure continuity of the insulation throughout the junction.

- Fix ceiling first and seal all gaps between the ceiling and masonry wall with either adhesive or flexible sealant.
- Seal all penetrations through air barrier using a flexible sealant.

- Blockwork inner leaf/parging coat applied to internal face of inner leaf with insulated dry-lining on dabs or mechanically fixed over, or
- Insulated dry-lining on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

Masonry Internal Wall Insulation
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

Thermal Performance of Junction
- Ensure the top of wall is levelled with mortar to the correct pitch.
- Fit the insulation over the top of the wall within the gable ladder. Fully fill the void between the wall head and the over rafter insulation.
- Ensure that the full depth of insulation between and over the rafters extends to the wall. Pack the gap between rafter and wall with compressible insulation.
- Ensure that the insulation is installed tightly between the rafters and is in contact with the over rafter insulation.
- Ensure that insulated dry-lining tightly abuts the underside of the ceiling.

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

Air Barrier Continuity
- Fix ceiling first and seal all gaps between the ceiling and masonry wall with either adhesive or flexible sealant.
- Seal all penetrations through air barrier using a flexible sealant.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

Air Barrier Options
- Blockwork inner leaf/parging coat applied to internal face of inner leaf with insulated dry-lining on dabs or mechanically fixed over, or
- Plasterboard on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

General Notes
- If required by BS5250 use a vapour control plasterboard or a separate vapour control layer behind the plasterboard.
- Vapour permeable roof underlay to be used in strict accordance with approved third party certification.
- The use of over rafter insulation is considered best practice as it eliminates the cold bridge caused by the rafter.
- Ensure that the bottom of the loft ladder is at least 25mm above the bottom of the last joist.
- This detail to be read in conjunction with detail No’s: MII-RE-07 or MII-RE-08.

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

MII-WD-01 Windows and Doors. Steel Lintels.

Masonry Internal Wall Insulation
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

MII-WD-02 Windows and Doors. Independent Lintels.

Masonry Internal Wall Insulation

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

THERMAL PERFORMANCE OF JUNCTION

- Ensure thickness of lintel material is no more than 3.2mm. 🟠
- Ensure lintel is fully insulated and does not have a base plate.
- Minimum frame overlap to be 30mm 🟡
- Install insulation to soffit of lintel having a minimum R-value of 0.34m².K/W (alternative provision for trickle ventilation may be required). 🟢

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

AIR BARRIER CONTINUITY

- Apply flexible sealant to interface between plasterboard internal finish and window/door frame members. 🟡
- Seal all penetrations through air barrier using a flexible sealant.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

AIR BARRIER OPTIONS

- Blockwork inner leaf/parging coat applied to internal face of inner leaf with insulated dry-lining on dabs or mechanically fixed over, or
- Insulated dry-lining on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

GENERAL NOTES

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

CHECKLIST

THERMAL PERFORMANCE OF JUNCTION

- Install a proprietary cavity closer having a path of minimum thermal resistance through the closer of not less than 0.45 m²K/W (manufacturers certified data).
- Minimum frame overlap to be 30mm
- Ensure that insulated dry-lining tightly abuts the underside of the cill board.

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

CHECKLIST

AIR BARRIER CONTINUITY

- Ensure air barrier continuity between the window and the wall plasterboard.
- If forming the air barrier to the walls with the blockwork inner leaf or a parging coat on blocks, a flexible sealant should be installed between the cavity closer and blockwork wall.
- Flexible sealant should be applied to the junction between the plasterboard and cill board and between the cill board and window frame member.
- Seal all penetrations through air barrier using a flexible sealant.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

OPTION

AIR BARRIER OPTIONS

- Blockwork inner leaf/parging coat applied to internal face of inner leaf with insulated dry-lining on dabs or mechanically fixed over, or
- Insulated dry-lining on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

GENERAL NOTES

Accredited (Indicative) Detail Number: MII-WD-04

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.

CHECKLIST

THERMAL PERFORMANCE OF JUNCTION

- [] Install a proprietary cavity closer having a path of minimum thermal resistance path through the closer of not less than 0.45 m²K/W (manufacturers certified data).
- [] Minimum frame overlap to be 30mm
- [] Install insulation to jamb reveal having a minimum R-value of 0.34m².K/W.

Complying with the above checklist items qualifies the builder to claim the Ψ value given in Table 3 of IP 1/06 and Table K1 of SAP 2005.

CHECKLIST

AIR BARRIER CONTINUITY

- [] Apply flexible sealant to all interfaces between plasterboard and window/door frame members.
- [] If forming the air barrier to the walls with the blockwork inner leaf or a parge coat on blocks, a flexible sealant should be installed between the cavity closer and blockwork wall.
- [] Seal all penetrations through air barrier using a flexible sealant.

Complying with all of the above checklist items will help achieve the design air permeability and may effect a reduced testing regime.

OPTION

AIR BARRIER OPTIONS

- [] Blockwork inner leaf/parge coat applied to internal face of inner leaf with insulated dry-lining on dabs or mechanically fixed over.
- [] Insulated dry-lining on dabs with continuous ribbon of adhesive around all openings, along the top and bottom of the wall, and at internal and external corners.

GENERAL NOTES

Accredited (Indicative) Detail Number: MII-WD-05

The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.
The above indicative guidance illustrates good practice for the design and construction of interfaces only in respect to ensuring thermal performance and air barrier continuity. The above guidance must be implemented with due regard to all other requirements imposed by the Building Regulations.