Amendments to the Approved Documents

This document contains amendments to the following Approved Documents:
A and C

July 2013
INTRODUCTION

This document contains:

Section 1: Amendments to Approved Document A

Section 2: Amendments to Approved Document C

The amendments to the approved documents take effect on 1 October 2013 for use in England*. The previous editions will continue to apply to work started before 1 October 2013, or to work subject to a building notice, full plans application or initial notice submitted before 1 October 2013.

The main changes to Approved Document A are updates to:

- References to British Standard design standards
- Guidance on disproportionate collapse
- Wind maps
- Guidance on strip footings.

The main changes to Approved Document C are updates to:

- Guidance on radon protective measures
- References to British Standard design standards
- Contaminated land references and Annex A removed.

The background to these changes is given in the 2012 consultation on the changes and the responses to the consultation: www.gov.uk/government/consultations/building-regulations-access-statements-security-changing-places-toilets-and-regulation-7

*The amendments apply to building work carried out in England. They also apply to building work carried out on excepted energy buildings in Wales as defined in the Welsh Ministers (Transfer of Functions) (No. 2) Order 2009.
Section 1

Amendments to Approved Document A
USE OF GUIDANCE

Page 4

THE WORKPLACE (HEALTH, SAFETY AND WELFARE) REGULATIONS 1992

Delete existing title and text and insert the following:

“OTHER HEALTH AND SAFETY LEGISLATION

Health and safety regulations such as the Workplace (Health, Safety and Welfare) Regulations 1992 may impose requirements on employers and those in control of buildings used as workplaces in relation to certain physical characteristics of the workplace. There are also requirements in health and safety law which affect building design. In particular, regulation 11 of the Construction (Design and Management) Regulations 2007 places duties on designers including the need to take account of the Workplace (Health, Safety and Welfare) Regulations 1992 which relate to the design of, and materials used in, any structure intended for use as a workplace.

Where such regulations apply there may be confusion as to whether the Building Regulations or health and safety requirements take precedence, as both will apply. Where an inspector for the purposes of the Health and Safety at Work etc. Act 1974 has identified a contravention of such health and safety regulations they may seek to serve an improvement notice to secure compliance. In such circumstances the inspector is prevented by virtue of Section 23(3) of the Health and Safety at Work etc. Act 1974 from requiring measures which are more onerous than necessary to comply with any requirements of the Building Regulations, unless the specific requirement of health and safety regulations are themselves more onerous.”

EUROCODES

Delete existing title and text and insert the following:

“BRITISH STANDARDS

The British Standards Institution notified the British Standards for structural design referenced in the 2004 edition of this Approved Document as withdrawn on 31 March 2010. British Standards for structural design based upon the Eurocodes were correspondingly implemented by the British Standards Institution on 1 April 2010 and it is these standards with their UK National Annexes which are now referenced in this Approved Document as practical guidance on meeting Part A requirements.

There may be alternative ways of achieving compliance with the requirements and there might be cases where it can be demonstrated that the use of withdrawn standards no longer maintained by the British Standards Institution continues to meet Part A requirements.”
A1/2 GUIDANCE

Page 6

Introduction

Delete existing paragraph 0.3 and insert the following:

“0.3 Grandstands and structures erected in places of public assembly may need to sustain the synchronous or rhythmic movement of numbers of people. It is important to ensure that the design of the structure takes these factors into account so as to avoid the structure being impaired or causing alarm to people using the structure.

Guidance on the design and testing of grandstands may be found in ‘Dynamic performance requirements for permanent grandstands subject to crowd action – Recommendations for management, design and assessment’ published by The Institution of Structural Engineers, December 2008.”

A1/2 Section 1: Codes, standards and references for all building types

Page 7

Delete all text from “Introduction” up to and including that in paragraph 1.8 and insert the following:

“Introduction

1.1 This section is relevant to all building types and lists codes, standards and other references for structural design and construction.

References

1.2 Basis of structural design and loading:

Eurocode: Basis of Structural Design

Eurocode 1: Actions on Structures

BSI PD 6688-1-1:2011 Published Document – Recommendations for the design of structures to BS EN 1991-1-1

BSI PD 6688-1-4:2009 Published Document – Background information to the National Annex to BS EN 1991-1-4 and additional guidance

BSI PD 6688-1-7:2009 Published Document – Recommendations for the design of structures to BS EN 1991-1-7

1.3 Structural work of reinforced, pre-stressed or plain concrete:

Eurocode 2: Design of Concrete Structures

BSI PD 6687-1:2010 Published Document – Background paper to the UK National Annexes to BS EN 1992-1 and BS EN 1992-3

BS EN 13670:2009 Execution of concrete structures

1.4 Structural work of steel:

Eurocode 3: Design of Steel Structures

BS EN 1993-1-7:2007 Eurocode 3: Design of steel structures – Part 1.7: Plated structures subject to out of plane loading

BSI PD 6695-1-9:2008 Published Document – Recommendations for the design of structures to BS EN 1993-1-9

BSI PD 6695-1-10:2009 Published Document – Recommendations for the design of structures to BS EN 1993-1-10

BRE Digest 437 Industrial platform floors: mezzanine and raised storage
1.5 Structural work of composite steel and concrete:
Eurocode 4: Design of Composite Steel and Concrete Structures

1.6 Structural work of timber:
Eurocode 5: Design of Timber Structures

1.7 Structural work of masonry:
Eurocode 6: Design of Masonry Structures
BSI PD 6697:2010 Published Document – Recommendations for the design of masonry structures to BS EN 1996-1-1 and BS EN 1996-2
BS 8103-1:2011 Structural design of low-rise buildings – Part 1: Code of Practice for stability, site investigation, foundations, precast concrete floors and ground floor slabs for housing
BS 8103-2:2005 Structural design of low-rise buildings – Part 2: Code of practice for masonry walls for housing

1.8 Geotechnical work and foundations:
Eurocode 7: Geotechnical Design

1.9 Seismic aspects:
Eurocode 8: Design of Structures for Earthquake Resistance
BSI PD 6698:2009 Published Document – Recommendations for the design of structures for earthquake resistance to BS EN 1998
1.10 Structural work of aluminium:

Eurocode 9: Design of Aluminium Structures

- BSI PD 6702-1:2009 Published Document – Structural use of aluminium – Part 1: Recommendations for the design of aluminium structures to BS EN 1999
- BS EN 1090-3:2008 Execution of steel structures and aluminium structures – Part 3: Technical requirements for aluminium structures
- BSI PD 6705-3:2009 Published Document – Structural use of steel and aluminium – Part 3: Recommendations for the execution of aluminium structures to BS EN 1090-3

Page 8

Ground movement (Requirement A2b)

Change paragraph numbering:

Replace “1.9” with “1.11”

Page 8

Existing buildings

Change paragraph numbering:

Replace “1.10” with “1.12”

Page 8

Existing buildings

Delete existing paragraphs 1.10a., 1.10b. and Note and insert the following:

b. The Institution of Structural Engineers Technical Publication Appraisal of Existing Structures (Third edition), 2010

Note: With reference to ‘design checks’ in the referenced Institution of Structural Engineers’ Technical Publication the choice of various partial factors should be made to suit the individual circumstances of each case.”

A1/2 Section 2A: Basic requirements for stability

Page 10

2A2 sub paragraph d. “Note:”

Delete existing text and insert the following:

“Note: A traditional cut timber roof (i.e. using rafters, purlins and ceiling joists) generally has sufficient built in resistance to instability and wind forces (e.g. from hipped ends, tiling battens, rigid sarking or the like). However, the need for diagonal rafter bracing equivalent to that recommended in BS EN 1995-1-1:2004 with its UK National Annex and additional guidance given in BSI Published Document PD 6693-1:2012 and BS 8103-3:2009 for trussed rafter roofs should be considered, especially for single-hipped and non-hipped roofs of greater than 40° pitch to detached houses.”
A1/2 Section 2B: sizes of certain timber members in floors and roofs for dwellings. Areas at risk from house longhorn beetle

Sizing of members

Page 11

2B1

Delete existing text and insert the following:

“Guidance on the sizing of certain members in floors and roofs is given in ‘Span tables for solid timber members in floors, ceilings and roofs (excluding trussed rafter roofs) for dwellings’, published by TRADA, available from Chiltern House, Stocking Lane, Hughenden Valley, High Wycombe, Bucks HP14 4ND.

House longhorn beetle

Page 11

2B2 second paragraph

Delete existing text and insert the following:

“Guidance on suitable preservative treatments is given within The Wood Protection Association’s manual ‘Industrial Wood Preservation: Specification and Practice’ (2012), available from 5C Flemming Court, Castleford, West Yorkshire, WF10 5HW.”

A1/2 Section 2C: Thickness of walls in certain small buildings

The use of this section

Page 12

2C3 sub paragraph c.

Delete existing text and insert the following:

“c. walls should comply with the relevant requirements of BS EN 1996-2:2006 with its UK National Annex and additional guidance given in BSI Published Document PD 6697:2010, except as regards the conditions given in paragraphs 2C4 and 2C14 to 2C38;”

Page 12

2C3 sub paragraph e. second paragraph

Delete existing text and insert the following:

“BS EN 1996-1-1:2005 with its UK National Annex gives design strengths for walls where the suitability for use of masonry units of other compressive strengths is being considered.”

Thickness of walls

Page 13

2C8

Delete existing first paragraph and insert the following:

“2C8 Cavity walls in coursed brickwork or blockwork: All cavity walls should have leaves at least 90mm thick and cavities at least 50mm wide. The wall ties should have a horizontal spacing of 900mm and a vertical spacing of 450mm, or alternatively should be spaced such that the number of wall ties per square metre is not less than 2.5 ties/m². Wall ties should also be provided, spaced not more than 300mm apart vertically, within a distance of 225mm from the vertical edges of all openings, movement joints and roof verges. For selection of wall ties for use in a range of cavity widths refer to Table 5. For specification of cavity wall ties refer to paragraph 2C19.”
Page 16

2C13
Delete existing text and insert the following:
“2C13 Modular bricks and blocks: Where walls are constructed of bricks or blocks having modular dimensions, wall thicknesses prescribed in this section which derive from a dimension of brick or block may be reduced by an amount not exceeding the deviation from work size permitted by a British Standard relating to equivalent sized bricks or blocks made of the same material.”

Page 16

2C16
Delete existing text and insert the following:
“2C16 Maximum height of buildings: The design guidance in this section is based on BS EN 1991-1-4:2005 with its UK National Annex. The maximum heights of buildings given in Table c of Diagram 7 correlate to various site exposure conditions and wind speeds. A map showing wind speeds is given in Figure 1 of Diagram 6.”

Construction materials and workmanship

Page 17

2C19
Delete existing text and insert the following:
“2C19 Wall ties: Wall ties should comply with BS EN 845-1 and should be material references 1 or 3 in BS EN 845-1 Table A1 austenitic stainless steel. Wall ties should be selected in accordance with Table 5 of this Approved Document.”

Page 17

2C20
Delete existing text and insert the following:
“2C20 Masonry units: Walls should be properly bonded and solidly put together with mortar and constructed of masonry units conforming to:
 a. clay bricks or blocks to BS EN 771-1;
 b. calcium silicate bricks or blocks to BS EN 771-2;
 c. concrete bricks or blocks to BS EN 771-3 or BS EN 771-4;
 d. manufactured stone to BS EN 771-5;
 e. square dressed natural stone to the appropriate requirements described in BS EN 771-6.”
Delete the existing Diagram 6 and insert the following:

Diagram 6 Map showing wind speeds in m/s for maximum height of buildings

Figure 1 Map of wind speeds (V) in m/s

Figure 2 Orographic zones for Factor O

Note: A more detailed approach for obtaining Factor O is given by Figure 3 Diagram 7.
Amendments to Approved document A

Diagram 6

Add new Figure 3 to Diagram 6.

Diagram 6 Map showing wind speeds in m/s for maximum height of buildings

Figure 3a Orography Factor O for hills and ridges

Figure 3b Orography Factor O for cliffs and escarpments (interpolation between curves may be used)

Figure 3 Alternative graphical method for determining Orography Factor O
Amendments to Approved document A

Amendments to the approved documents

Diagram 7 Maximum height of buildings

Delete the existing Diagram 7 and insert the following:

Read map wind speed V from Figure 1 Diagram 6
Find the orographic zone for the site from Figure 2 Diagram 6 and obtain Factor O from Table a (or use Figure 3 Diagram 6)
Obtain value of Factor A from Table b
Calculate value of Factor S from: $S = V \times O \times A$
Obtain maximum allowable building height from Table c

Table a Factor O

<table>
<thead>
<tr>
<th>Orographic category and average slope of whole hillside, ridge, cliff or escarpment</th>
<th>Factor O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone 1</td>
<td>Zone 2</td>
</tr>
<tr>
<td>Category 1: Nominally flat terrain, average slope < 1/20</td>
<td>1.0</td>
</tr>
<tr>
<td>Category 2: Shallow terrain, average slope < 1/10</td>
<td>1.12</td>
</tr>
<tr>
<td>Category 3: Moderately steep terrain, average slope < 1/5</td>
<td>1.24</td>
</tr>
<tr>
<td>Category 4: Steep terrain, average slope > 1/5</td>
<td>1.36</td>
</tr>
</tbody>
</table>

Table b Factor A

<table>
<thead>
<tr>
<th>Site altitude (m)</th>
<th>Factor A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.00</td>
</tr>
<tr>
<td>50</td>
<td>1.05</td>
</tr>
<tr>
<td>100</td>
<td>1.10</td>
</tr>
<tr>
<td>150</td>
<td>1.15</td>
</tr>
<tr>
<td>200</td>
<td>1.20</td>
</tr>
<tr>
<td>300</td>
<td>1.30</td>
</tr>
<tr>
<td>400</td>
<td>1.40</td>
</tr>
<tr>
<td>500</td>
<td>1.50</td>
</tr>
</tbody>
</table>

Table c Maximum allowable building height in metres

<table>
<thead>
<tr>
<th>Factor S</th>
<th>Distance to the coast < 2km</th>
<th>2 to 20km</th>
<th>> 50km</th>
<th>Distance to the coast < 2km</th>
<th>2 to 20km</th>
<th>> 50km</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤25</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>26</td>
<td>11.5</td>
<td>13.5</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>27</td>
<td>8</td>
<td>11</td>
<td>14.5</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>28</td>
<td>5.5</td>
<td>8</td>
<td>11</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>29</td>
<td>4</td>
<td>6.5</td>
<td>8.5</td>
<td>12.5</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>30</td>
<td>3</td>
<td>5</td>
<td>6.5</td>
<td>10</td>
<td>12.5</td>
<td>15</td>
</tr>
<tr>
<td>31</td>
<td>4</td>
<td>5</td>
<td>5.5</td>
<td>8.5</td>
<td>11</td>
<td>13.5</td>
</tr>
<tr>
<td>32</td>
<td>3.5</td>
<td>4.5</td>
<td>4.5</td>
<td>7</td>
<td>9.5</td>
<td>11.5</td>
</tr>
<tr>
<td>33</td>
<td>3</td>
<td>3.5</td>
<td>3.5</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>34</td>
<td>3</td>
<td>3.5</td>
<td></td>
<td>5.5</td>
<td>7</td>
<td>87.5</td>
</tr>
<tr>
<td>35</td>
<td>3</td>
<td>3.5</td>
<td></td>
<td>4</td>
<td>6.5</td>
<td>7.5</td>
</tr>
<tr>
<td>36</td>
<td>3</td>
<td>3.5</td>
<td></td>
<td>4</td>
<td>5.5</td>
<td>6.5</td>
</tr>
<tr>
<td>37</td>
<td>3</td>
<td>3.5</td>
<td></td>
<td>3</td>
<td>4.5</td>
<td>5.5</td>
</tr>
<tr>
<td>38</td>
<td>3</td>
<td>3</td>
<td></td>
<td>3.5</td>
<td>4</td>
<td>4.5</td>
</tr>
<tr>
<td>39</td>
<td>3</td>
<td>3</td>
<td></td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>40</td>
<td>3</td>
<td>3</td>
<td></td>
<td>3.5</td>
<td>3</td>
<td>3.5</td>
</tr>
<tr>
<td>41</td>
<td>3</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>3</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>3</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>3</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Table a – Outside of the zones shown in Table a, the Factor O = 1.0.
Table b – For elevated sites where orography is significant a more accurate assessment of Factor A can be obtained by using the altitude at the base of the topographic feature instead of the altitude at the site, see Figure 2 Diagram 6 or, alternatively, Figure 3 Diagram 6.
Table c – i) Sites in town less than 300m from the edge of the town should be assumed to be in country terrain.
ii) Where a site is closer than 1km to an inland area of water which extends more than 1km in the wind direction, the distance to the coast should be taken as < 2km.
Interpolation may be used in Tables b and c.
Amendments to Approved document A

Page 21

Table 5 Cavity wall ties

Delete the existing Table 5 and insert the following:

<table>
<thead>
<tr>
<th>Nominal cavity width mm (Note 1)</th>
<th>Tie length mm (Note 2)</th>
<th>BS EN 845-1 tie</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 to 75</td>
<td>200</td>
<td>Type 1, 2, 3 or 4 to BSI PD 6697:2010 and selected on the basis of the design loading and design cavity width.</td>
</tr>
<tr>
<td>76 to 100</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>101 to 125</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>126 to 150</td>
<td>275</td>
<td></td>
</tr>
<tr>
<td>151 to 175</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>176 to 300</td>
<td>(See Note 3)</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Where face insulated blocks are used the cavity width should be measured from the face of the masonry unit.
2. The embedment depth of the tie should not be less than 50mm in both leaves.
3. For cavities wider than 175mm calculate the length as the nominal cavity width plus 125mm and select the nearest stock length. For wall ties requiring embedment depths in excess of 50mm, increase the calculated tie length accordingly.

Page 23

2C22

Delete existing text and insert the following:

“2C22 Mortar: Mortar should be:

a. one of the following:
 i. Mortar designation (iii) according to BS EN 1996-1-1:2005 with its UK National Annex;
 ii. Strength class M4 according to BS EN 998-2:2010;
 iii. 1:1:5 to 6 CEM I, lime, and fine aggregate measured by volume of dry materials, or

b. of equivalent or greater strength and durability to the specifications in a. above.”

Lateral support by roofs and floors

Page 27

Diagram 14 Sizes of openings and recesses, Note 8

Delete existing text and insert the following:

“8 Take the value of the Factor X from Table 8, or it can be given the value 6, provided the declared compressive strength of the bricks or blocks (in the case of a cavity wall – in the loaded leaf) is not less than 7.3N/mm².”

Page 28

2C35 sub paragraph b.

Delete existing text and insert the following:

“b. in the longitudinal direction of joists in houses of not more than 2 storeys, if the joists are carried on the supported wall by joist hangers in accordance with BS EN 845-1 of the restraint type described by additional guidance given in BSI Published Document PD 6697:2010 and shown in Diagram 15(c), and are incorporated at not more than 2m centres, and”
Small single-storey non-residential buildings and annexes

Page 30

2C38 Size and proportion i. General sub paragraph h.

_Delete existing text and insert the following:

“h. The roof is braced at rafter level, horizontally at eaves level and at the base of any gable by roof decking, rigid sarking or diagonal timber bracing, as appropriate, in accordance with BS EN 1995-1-1:2004 with its UK National Annex and additional guidance given in BSI Published Document PD 6693-1:2012 or BS 8103-3:2009.”

Page 32

Diagram 19 Lateral restraint at roof level, Note:

_Delete existing text and insert the following:

“Note: Fixings should be in accordance with Diagram 16”

A1/2 Section 2E: Foundations of plain concrete

Minimum depth of strip foundations

Page 35

2E4

_Delete existing text and insert the following:

“2E4 Except where strip foundations are founded on rock, the strip foundations should have a minimum depth of 0.45m to their underside to avoid the action of frost. This depth, however, will commonly need to be increased in areas subject to long periods of frost or in order to transfer the loading onto satisfactory ground.

In clay soils subject to volume change on drying (‘shrinkable clays’, with Modified Plasticity Index greater than or equal to 10%), strip foundations should be taken to a depth where anticipated ground movements will not impair the stability of any part of the building taking due consideration of the influence of vegetation and trees on the ground. The depth to the underside of foundations on clay soils should not be less than 0.75m on low shrinkage clay soils, 0.9m on medium shrinkage clay soils and 1.0m on high shrinkage clay soils, although these depths may need to be increased in order to transfer the loading onto satisfactory ground, or where there are trees nearby.”

A1/2 Section 3: Wall cladding

Page 36

Loading

_Delete existing 3.3, 3.4, 3.5 and 3.6 and insert the following:

“3.3 Wind loading on the cladding should be derived from BS EN 1991-1-4:2005 with its UK National Annex with due consideration given to local increases in wind suction arising from funnelling of the wind through gaps between buildings.

3.4 Where the cladding is required to support other fixtures, e.g. handrails, and fittings, e.g. antennae and signboards, account should be taken of the loads and forces arising from such fixtures and fittings.

3.5 Where the wall cladding is required to function as pedestrian guarding to stairs, ramps, vertical drops of more than 600mm in dwellings or more than the height of two risers (or 380mm if not part of a stair) in other buildings, or as a vehicle barrier, then account should be taken of the additional imposed loading, as stipulated in Approved Document K, Protection from falling, collision and impact.

1 Amendments to Approved document A

Amendments to the approved documents

Page 37
Further guidance

Delete the reference to BS 8298:1994 under paragraph 3.10 and insert the following:
“BS 8298:2010 Code of practice for the design and installation of natural stone cladding and lining.”

A1/2 Section 4: Roof covering

Page 38
Materials

Delete existing paragraph 4.1 and insert the following:

“All materials used to cover roofs, excluding windows of glass in residential buildings with roof pitches of not less than 15°, shall be capable of safely withstanding the concentrated imposed loads upon roofs specified in BS EN 1991-1-1:2012 with its UK National Annex. Transparent or translucent covering materials for roofs not accessible except for normal maintenance and repair are excluded from the requirement to carry the concentrated imposed load upon roofs if they are non-fragile or are otherwise suitably protected against collapse.”

Page 38
Re-covering of roofs

Delete existing paragraph 4.4 and insert the following:

“A significant change in roof loading is when the loading upon the roof is increased by more than 15%. Consideration might also be given to whether the roof covering being replaced is the original as-built covering.”

A3 Section 5: Reducing the sensitivity of the building to disproportionate collapse in the event of an accident

Pages 41-42

Delete existing Section 5 inclusive of paragraphs 5.1 to 5.4 and Table 11 and insert the following:

“5.1 The requirement will be met by adopting the following approach for ensuring that the building is sufficiently robust to sustain a limited extent of damage or failure, depending on the consequence class of the building, without collapse.

a. Determine the building’s consequence class from Table 11.

b. For Consequence Class 1 buildings – Provided the building has been designed and constructed in accordance with the rules given in this Approved Document, or other guidance referenced under Section 1, for meeting compliance with requirement A1 and A2 in normal use, no additional measures are likely to be necessary.

c. For Consequence Class 2a buildings – In addition to the Consequence Class 1 measures, provide effective horizontal ties, or effective anchorage of suspended floors to walls, as described in the Standards listed under paragraph 5.2 for framed and load-bearing wall construction (the latter being defined in paragraph 5.3 below).

d. For Consequence Class 2b buildings – In addition to the Consequence Class 1 measures, provide effective horizontal ties, as described in the Standards listed under paragraph 5.2 for framed and load-bearing wall construction (the latter being defined in paragraph 5.3 below), together with effective vertical ties, as defined in the Standards listed under paragraph 5.2, in all supporting columns and walls.

Alternatively, check that upon the notional removal of each supporting column and each beam supporting one or more columns, or any nominal length of load-bearing wall (one at a time in each storey of the building), the building remains stable and that the area of floor at any storey at risk of collapse does not exceed 15% of the floor area of that storey or 100m², whichever is smaller, and does not extend further than the immediate adjacent storeys (see Diagram 24).

Where the notional removal of such columns and lengths of walls would result in an extent of damage in excess of the above limit, then such elements should be designed as a ‘key element’ as defined in paragraph 5.3 below.
e. **For Consequence Class 3 buildings** – A systematic risk assessment of the building should be undertaken taking into account all the normal hazards that may reasonably be foreseen, together with any abnormal hazards.

Critical situations for design should be selected that reflect the conditions that can reasonably be foreseen as possible during the life of the building. The structural form and concept and any protective measures should then be chosen and the detailed design of the structure and its elements undertaken in accordance with the recommendations given in the Standards given in paragraph 5.2.

Table 11 Building consequence classes

<table>
<thead>
<tr>
<th>Consequence Classes</th>
<th>Building type and occupancy</th>
</tr>
</thead>
</table>
| 1 | Houses not exceeding 4 storeys
Agricultural buildings
Buildings into which people rarely go, provided no part of the building is closer to another building, or area where people do go, than a distance of 1.5 times the building height |
| 2a Lower Risk Group | 5 storey single occupancy houses
Hotels not exceeding 4 storeys
Flats, apartments and other residential buildings not exceeding 4 storeys
Offices not exceeding 4 storeys
Industrial buildings not exceeding 3 storeys
Retailing premises not exceeding 3 storeys of less than 2000m² floor area in each storey
Single-storey educational buildings
All buildings not exceeding 2 storeys to which members of the public are admitted and which contain floor areas not exceeding 2000m² at each storey |
| 2b Upper Risk Group | Hotels, blocks of flats, apartments and other residential buildings greater than 4 storeys but not exceeding 15 storeys
Educational buildings greater than 1 storey but not exceeding 15 storeys
Retailing premises greater than 3 storeys but not exceeding 15 storeys
Hospitals not exceeding 3 storeys
Offices greater than 4 storeys but not exceeding 15 storeys
All buildings to which members of the public are admitted which contain floor areas exceeding 2000m² but less than 5000m² at each storey
Car parking not exceeding 6 storeys |
| 3 | All buildings defined above as Consequence Class 2a and 2b that exceed the limits on area and/or number of storeys
Grandstands accommodating more than 5000 spectators
Buildings containing hazardous substances and/or processes |

Notes:

1. For buildings intended for more than one type of use the Consequence Class should be that pertaining to the most onerous type.
2. In determining the number of storeys in a building, basement storeys may be excluded provided such basement storeys fulfil the robustness requirements of Consequence Class 2b buildings.
3. BS EN 1991-1-7:2006 with its UK National Annex also provides guidance that is comparable to Table 11.
5.2 Details of the effective horizontal and vertical ties including tie force determination, together with the design approaches for checking the integrity of the building following the notional removal of vertical members and the design of key elements, are given in the following Standards:

5.3 Definitions

Nominal length of load-bearing wall

The nominal length of load-bearing wall construction referred to in 5.1d should be taken as follows:

- in the case of a reinforced concrete wall, the distance between lateral supports subject to a maximum length not exceeding 2.25H,
- in the case of an external masonry wall, or timber or steel stud wall, the length measured between vertical lateral supports,
- in the case of an internal masonry wall, or timber or steel stud wall, a length not exceeding 2.25H,

where H is the storey height in metres.

Key elements

A 'key element', as referred to in paragraph 5.1d, should be capable of sustaining an accidental design loading of 34kN/m² applied in the horizontal and vertical directions (in one direction at a time) to the member and any attached components (e.g. cladding etc.) having regard to the ultimate strength of such components and their connections. Such accidental design loading should be assumed to act simultaneously with all other design loadings (i.e. wind and imposed loading) in accidental actions loading combination.

BS EN 1990:2002+A1:2005 with its UK National Annex provides guidance on accidental design loading and accidental actions loading combination for 'key elements' and expressions 6.11a and 6.11b of that Standard are relevant.

Note: Annex A of BS EN 1991-1-7:2006 with its UK National Annex provides corresponding guidance for 'key elements'.

Load-bearing construction

For the purposes of this Guidance the term 'load-bearing wall construction' includes masonry cross-wall construction and walls comprising close centred timber or lightweight steel section studs.
Alternative approach

5.4 As an alternative to Table 11, for any building which does not fall into the classes listed under Table 11, or for which the consequences of collapse may warrant particular examination of the risks involved, performance may be demonstrated using the recommendations given in the following Reports and Publication:

Both of the above documents are available on www.planningportal.gov.uk

‘Practical Guide to Structural Robustness and Disproportionate Collapse in Buildings’ dated October 2010. Published by The Institution of Structural Engineers, London.”

Page 42

Insert the following new sub title and paragraph 5.5:

“Seismic design

5.5 Seismic design is not usually required for buildings classified by Table 11 as being in Consequence Classes 1, 2a and 2b. For buildings classified as Consequence Class 3 the risk assessment should consider if there is any need to carry out seismic design, although such a need is not an explicit requirement for these buildings.”

Page 43

Diagram 24 Area at risk of collapse in the event of an accident

Delete the existing Diagram 24 and insert the following:

Diagram 24 Area at risk of collapse in the event of an accident

See para 5.1d

Area at risk of collapse limited to 15% of the floor area of that storey or 100m², whichever is the lesser, and does not extend further than the immediate adjacent storeys.
Amendments to Approved document A

Pages 44-45

A Standards referred to

Delete the existing reference list and insert the following:

“A1/2

BS 5080-1:1993
Structural fixings in concrete and masonry. Method of test for tensile loading.

BS 8103-1:2011
Structural design of low-rise buildings. Code of practice for stability, site investigation, foundations, precast concrete floors and ground floor slabs for housing.

BS 8103-2:2005

BS 8103-3:2009

BS 8297:2000
Code of practice for design and installation of non-loadbearing precast concrete cladding. A

BS 8298-1:2010
Code of practice for the design and installation of natural stone cladding and lining. General.

BS 8298-2:2010
Code of practice for the design and installation of natural stone cladding and lining. Traditional handset external cladding.

BS 8298-3:2010
Code of practice for the design and installation of natural stone cladding and lining. Stone-faced pre-cast concrete cladding systems.

BS 8298-4:2010
Code of practice for the design and installation of natural stone cladding and lining. Rainscreen and stone on metal frame cladding systems.

BS 8500-1:2006+A1:2012
Concrete. Complementary British Standard to BS EN 206-1. Method of specifying and guidance for the specifier.

BS EN 197-1:2011
Cement. Composition, specifications and conformity criteria for common elements.

BS EN 197-2:2000
Cement. Conformity evaluation.

BS EN 771-1:2011
Specification for masonry units. Clay masonry units.

BS EN 771-2:2011
Specification for masonry units. Calcium silicate masonry units.

BS EN 771-3:2011

BS EN 771-4:2011
Specification for masonry units. Autoclaved aerated concrete masonry units.

BS EN 771-5:2011
Specification for masonry units. Manufactured stone masonry units.

BS EN 771-6:2011
Specification for masonry units. Natural stone masonry units.

BS EN 845-2:2003
Specification for ancillary components for masonry. Lintels.

BS EN 998-2:2010

Execution of steel structures and aluminium structures – Part 2: Technical requirements for the execution of steel structures.

BS EN 1090-3:2008
Execution of steel structures and aluminium structures – Part 3: Technical requirements for aluminium structures.

BS EN 1991-1-1:2002

BS EN 1991-1-3:2003

BS EN 1991-1-5:2003

BS EN 1991-1-6:2005

BS EN 1991-1-7:2006

BS EN 1991-3:2006

BS EN 1992-1-1:2004

BS EN 1993-1-1:2005

BS EN 1993-1-3:2006

BS EN 1993-1-4:2006

BS EN 1993-1-5:2006
BS EN 1993-1-6:2007

BS EN 1993-1-7:2007
Eurocode 3: Design of steel structures – Part 1.7: Plated structures subject to out of plane loading.

BS EN 1993-1-8:2005

BS EN 1993-1-9:2005

BS EN 1993-1-10:2005

BS EN 1993-1-11:2006

BS EN 1993-1-12:2007

BS EN 1993-6:2007

BS EN 1994-1-1:2004

BS EN 1996-2:2006

BS EN 1996-3:2006

BS EN 1997-1:2004

BS EN 1997-2:2007

BS EN 1998-5:2004
AMENDMENTS TO APPROVED DOCUMENT A

BS EN 1999-1-5:2007

BS EN 13670:2009
Execution of concrete structures.

BSI PD 6687-1:2010

BSI PD 6688-1-1:2011
Published Document – Recommendations for the design of structures to BS EN 1991-1-1.

BSI PD 6688-1-4:2009
Published Document – Background information the National Annex to BS EN 1991-1-4 and additional guidance.

BSI PD 6688-1-7:2009
Published Document – Recommendations for the design of structures to BS EN 1991-1-7.

BSI PD 6693-1:2012

BSI PD 6695-1-9:2008
Published Document – Recommendations for the design of structures to BS EN 1993-1-9.

BSI PD 6695-1-10:2009
Published Document – Recommendations for the design of structures to BS EN 1993-1-10.

BSI PD 6697:2010
Published Document – Recommendations for the design of masonry structures to BS EN 1996-1-1 and BS EN 1996-2.

BSI PD 6698:2009
Published Document – Recommendations for the design of structures for earthquake resistance to BS EN 1998.

BSI PD 6702-1:2009
Published Document – Structural use of aluminium – Part 1: Recommendations for the design of aluminium structures to BS EN 1999.

BSI PD 6705-3:2009
Published Document – Structural use of steel and aluminium – Part 3: Recommendations for the execution of aluminium structures to BS EN 1090-3.

A3

BS EN 1991-1-7:2006
AMENDMENTS TO APPROVED DOCUMENT A

BS EN 1992-1-1:2004

BS EN 1993-1-1:2005

BS EN 1994-1-1:2004

BSI PD 6687-1:2010

BSI PD 6688-1-7:2009
Published Document – Recommendations for the design of structures to BS EN 1991-1-7.

BSI PD 6693-1:2012

BSI PD 6697:2010
Published Document – Recommendations for the design of masonry structures to BS EN 1996-1-1 and BS EN 1996-2.

BSI PD 6702-1:2009
Published Document – Structural use of aluminium – Part 1. Recommendations for the design of aluminium structures to BS EN 1999.”

Inside rear cover page

APPROVED DOCUMENTS

Delete the existing title, text and reference list and insert the following:

“List of approved documents

The following documents have been published to give practical guidance about how to meet the Building Regulations. You can find the date of the edition approved by the Secretary of State at www.planningportal.gov.uk.

Approved Document A
Structure

Approved Document B: Volume 1
Fire safety – Dwellinghouses

Approved Document B: Volume 2
Fire safety – Buildings other than dwellinghouses

Approved Document C
Site preparation and resistance to contaminants and moisture

Approved Document D
Toxic substances

Approved Document E
Resistance to the passage of sound
Approved Document F
Ventilation

Approved Document G
Sanitation, hot water safety and water efficiency

Approved Document H
Drainage and waste disposal

Approved Document J
Combustion appliances and fuel storage systems

Approved Document K
Protection from falling, collision and impact

Approved Document L1A
Conservation of fuel and power in new dwellings

Approved Document L1B
Conservation of fuel and power in existing dwellings

Approved Document L2A
Conservation of fuel and power in new buildings other than dwellings

Approved Document L2B
Conservation of fuel and power in existing buildings other than dwellings

Approved Document M
Access to and use of buildings

Approved Document P
Electrical Safety – Dwellings

Approved Document 7
Materials and workmanship
Section 2

Amendments to Approved Document C
Contents

Page 2

Delete completely “Annex A: Guidance on the assessment of land affected by contaminants”.
Delete completely “References to Annex A”.

Page 2

DIAGRAMS

Delete completely “A1. The process of managing land affected by contaminants”.

USE OF GUIDANCE

Page 4

THE WORKPLACE (HEALTH, SAFETY AND WELFARE) REGULATIONS 1992

Delete existing title and text and insert the following:

“OTHER HEALTH AND SAFETY LEGISLATION

Health and safety regulations such as the Workplace (Health, Safety and Welfare) Regulations 1992 may impose requirements on employers and those in control of buildings used as workplaces in relation to certain physical characteristics of the workplace. There are also requirements in health and safety law which affect building design. In particular, regulation 11 of the Construction (Design and Management) Regulations 2007 places duties on designers including the need to take account of the Workplace (Health, Safety and Welfare) Regulations 1992 which relate to the design of, and materials used in, any structure intended for use as a workplace.

Where such regulations apply there may be confusion as to whether the Building Regulations or health and safety requirements take precedence, as both will apply. Where an inspector for the purposes of the Health and Safety at Work etc. Act 1974 has identified a contravention of such health and safety regulations they may seek to serve an improvement notice to secure compliance. In such circumstances the inspector is prevented by virtue of Section 23(3) of the Health and Safety at Work etc. Act 1974 from requiring measures which are more onerous than necessary to comply with any requirements of the Building Regulations, unless the specific requirement of health and safety regulations are themselves more onerous.”
Historic Buildings

Page 7

In sub paragraph b, delete “breathe” and insert “breathe, breathe”.

Page 8

In first paragraph on page 8, delete “completed” and insert “completed”.

In last paragraph, delete “Guidance on this can be found in Good Building Guide 25 Buildings and radon” and insert “Guidance on this can be found in BRE Report BR211”.

Delete footnotes 5 and 6 and insert the following:

“BRE Report BR 211 Radon: Guidance on protective measures for new buildings (including supplementary advice for extensions, conversions and refurbishment), 2007.”

Page 9

Section 0: General

Insert at the end of paragraph 0.3 the following:

“This includes action designed to prevent, i.e. inhibit, the ingress of radon gas into buildings to protect the health of occupants from exposure to indoor radon.”

Flood risk

Delete the first and second sentences of the first paragraph of 0.8 and insert the following:

“0.8 Policies set out in the National Planning Policy Framework aim to avoid inappropriate development in areas at risk of flooding, including requiring new development to be flood resilient and resistant, as and where appropriate. Flood resistance is not currently a requirement in Schedule 1 of the Building Regulations 2010 (and amendments).”

Delete footnote 7 and insert the following:

“National Planning Policy Framework, Communities and Local Government, March 2012.”

Page 10

Delete the last paragraph of 0.8 and insert the following:

“Further information on flood resistant and resilient construction can be found in the publication Improving the flood performance of new buildings – Flood resilient construction.”

Delete footnotes 8, 9 and 10 and insert the following:

Page 10

Land affected by contaminants

Delete the third sentence only of the first paragraph of 0.9 and insert the following:

“The Contaminated Land (England) Regulations 2006 (as amended 2012) make detailed provisions of a procedural nature to help give full effect to the Part IIA regime, and the statutory guidance provides a basis for enforcing authorities to apply the regime.”

Add new footnote 161 as:

Delete the second sentence only of the first paragraph of 0.10 and insert the following:

“This process is subject to controls under the Town and Country Planning Acts, and local planning authorities follow the guidance in the National Planning Policy Framework.”

Delete footnote 12 completely.

Add new footnote:

“National Planning Policy Framework, Communities and Local Government, March 2012.”
Page 10

Authorities that should be notified about contamination

In the second sentence of the third bullet point of 0.11 replace text “potential impact” with “significant potential impact”.

In the second sentence of the third bullet point of 0.11 replace text “Environmental Protection Act 1991” with “Environmental Protection Act 1990”.

Page 11

Delete the fifth bullet point of 0.11 and the text below it relating to guidance on the assessment of land affected by contaminants set out in Appendix A, and insert the following:

“• Working on contaminated land can be hazardous. The risks should be assessed and the working procedures should be in accordance with the requirements of the Construction (Design and Management) Regulations 2007. It may be necessary to give notice to the Health and Safety Executive prior to work starting.”

Page 12

Section 1: Clearance or treatment of unsuitable material

SITE INVESTIGATION

Delete the fourth, fifth and sixth sentences of paragraph 1.2 and insert the following:

“BS EN 1997-2:2007: Eurocode 7: Geotechnical Design with its UK National Annex\(^1\) supported by BS 5930:1999+A2:2010\(^2\) provide comprehensive guidance on site investigation. Guidance on site investigation for low-rise buildings is given in six BRE Digests covering procurement\(^3\), desk studies\(^4\), the walk-over survey\(^5\), trial pits\(^6\), soil description\(^7\), and direct investigation\(^8\). Reference should also be made to BS 8103-1:2011\(^9\).”

Delete footnote 14 to BS 5930:1999 and insert the following:

Add new footnote 36 as:

Delete footnote 21 and insert the following:

\(^3\)BS 8103-1:2011 Structural design of low-rise buildings – Part 1: Code of Practice for stability, site investigation, precast concrete floors and ground floor slabs for housing.”

Page 14

Section 2: Resistance to contaminants

INTRODUCTION

Delete the fourth sentence of paragraph 2.2 completely.

Delete footnote 30 completely.

Page 15

SOLID AND LIQUID CONTAMINANTS

Risk assessment

General concepts

Delete the first paragraph of 2.7 and insert the following:

“When land affected by contaminants is developed, receptors (i.e. buildings, building materials and building services, as well as people) are introduced onto the site and so it is necessary to break the pollutant linkages or condition them so that they do not pose a significant risk. This can be achieved by:”
Page 16

Stages of risk assessment

In the fifth sentence of the first paragraph of 2.8 replace the text “(CLR 11, Consultation draft 2003)” with “(CLR 1143).”

Delete 2.9 sub paragraphs b., c. and d. only and insert the following:

c. BS 10175:2011 Code of practice for investigation of potentially contaminated sites37,
d. the Environment Agency documents38,41,42,43,44,45.”

Delete footnote 36 and replace with:

Delete footnote 37 and insert the following:

“37BS 10175: 2011 Code of practice for investigation of potentially contaminated sites.”

Delete footnotes 39 and 40 completely.

Delete footnote 41 and insert the following:

“41Human health toxicological assessment of contaminants in soil (Science report – final SC050021/SR2), Environment Agency.

Delete footnote reference 42 and insert the following:

“42Updated technical background to the CLEA model (Science Report: SC050021/SR3), Environment Agency.

Delete footnote 43 and insert the following:

Page 17

Risk estimation and evaluation

Delete the final sentence only of the first paragraph of 2.13 and insert the following:

“Expert advice should be sought.”

Page 18

Remedial measures

Containment

Delete the first sentence of paragraph 2.20 and insert the following:

“Imported fill and soil for cover systems should be assessed at source to ensure that it is suitable for use46.”

Page 19

Risks to buildings, building materials and services

Delete the last sentence of 2.23d. and insert “Guidance on flood resilient construction can be found in \textit{Improving the flood performance of new buildings – Flood resilient construction}8.”

Delete footnotes 56 and 57 and insert the following:

Page 20

METHANE AND OTHER GASES FROM THE GROUND

Risk assessment

Delete the first sentence of paragraph 2.32 completely.

In the second sentence of paragraph 2.33 replace the text “forthcoming Defra/Environment Agency document CLR 1171” with “Defra/Environment Agency document CLR 1143”.

Delete footnote 71 and insert the following:

Page 21

RADON

Delete paragraph 2.40 and insert the following:

“2.40 Guidance on whether an area is susceptible to radon, and appropriate protective measures, can be obtained from BRE Report BR 21175. The maps in BR 211 are based on the indicative atlas published by Public Health England (formerly the Health Protection Agency) and the British Geological Survey.

Radon risk reports may be used as an alternative approach to the maps for assessing the need for protective measures. These reports are available from:

- UK Radon, www.UKradon.org, for small domestic and workplace buildings (and extensions) that have an existing postal address.
- BGS Georeports, www.shop.bgs.ac.uk/Georeports, for other development sites.
- Public Health England (formerly the Health Protection Agency), radon@phe.gov.uk, for large workplaces.

BR211 provides guidance on basic radon protective measures appropriate in areas where 3% to 10% of homes and full radon protective measures in areas where more than 10% of homes are predicted to have radon at or above the Radon Action Level of 200Bq/m³.

Note: Use of the alternative radon risk reports approach will provide a more accurate assessment of whether radon protective measures are necessary and, if needed, the level of protection that is appropriate.

The Ionising Radiations Regulations76 and other legislation set out relevant requirements including a national reference level for radon in workplaces. See also the BRE guide ‘Radon in the workplace’.

The Health and Safety Executive provides guidance on protection from radon in the workplace (www.hse.gov.uk/radiation/ionising/radon.htm). Additionally techniques for installing radon resistant membranes described in BR 211 may be suitable for use in domestic sized buildings with heating and ventilation regimes similar to those used in dwellings but this should be done with caution. Information in ‘Radon in the workplace’ provides guidance for existing non-domestic buildings.”

Delete paragraph 2.41 completely.

Delete footnote 75 and insert the following:

“75BRE Report BR 211 Radon: Guidance on protective measures for new buildings (including supplementary advice for extensions, conversions and refurbishment), 2007.”

Delete footnote 77 and insert the following:

Delete footnote 78 to BRE Good Building Guide 25,1996 completely.

Page 24

Section 4: Floors

Delete in 4.2d “BR21181” and insert “BR21175”.

*Delete footnote 81 and insert the following:
Amendments to Approved Document C

“BRE Report BR 211 Radon: Guidance on protective measures for new buildings (including supplementary advice for extensions, conversions and refurbishment), 2007.”

Page 27

Technical Solution

Delete the last sentence of 4.20 and insert the following:

“For guidance, see Improving the flood performance of new buildings – Flood resilient construction.”

Delete footnote 95 and insert the following:

Page 28

FLOORS (RESISTANCE TO SURFACE CONDENSATION AND MOULD GROWTH)

Delete in 4.22b “in accordance with the recommendations in the report on robust construction details” and insert “to Accredited Construction Details”

Delete footnote 99 and insert the following:

“Accredited Construction Details which can be downloaded from www.planningportal.gov.uk/buildingregulations/approveddocuments/partl/bcassociateddocuments/acd.”

Page 38

EXTERNAL WALLS (RESISTANCE TO SURFACE CONDENSATION AND MOULD GROWTH)

Delete in 5.36b “in accordance with the recommendations in the report on robust construction details” and insert “to Accredited Construction Details”

Delete footnote 131 and insert the following:

“Accredited Construction Details which can be downloaded from www.planningportal.gov.uk/buildingregulations/approveddocuments/partl/bcassociateddocuments/acd.”

Page 39

ROOFS (RESISTANCE TO MOISTURE FROM THE OUTSIDE)

Delete in 6.5 “(see Approved Document Supporting Regulation 7, Materials and Workmanship)” and insert “(see Approved Document 7, Materials and Workmanship)”

Delete footnote 133 and insert “Approved Document 7: Materials and Workmanship, DCLG, 2013 edition”

Page 40

ROOFS (RESISTANCE TO SURFACE CONDENSATION AND MOULD GROWTH)

Delete in 6.14 “in accordance with the recommendations in the report on robust construction details” and insert “to Accredited Construction Details”

Delete footnote 144 and insert the following:

“Accredited Construction Details which can be downloaded from www.planningportal.gov.uk/buildingregulations/approveddocuments/partl/bcassociateddocuments/acd.”

Page 41

British Standards referred to

Delete references 14 and 36 to BS 5930:1999 and insert the following:

Delete reference 21 and insert the following:
Amendments to Approved document C

Add new reference 36 as:

Delete reference 37 and insert the following:

Page 43

Other documents referred to

Delete reference 5 to BRE Report 267,1994 completely.
Delete references 75 and 81 and insert the following:
ISBN 978 1 84806 013 5
Delete reference 77 and insert the following:

Page 44

Delete reference 7 and insert the following:
Delete reference 10 completely.
Delete reference 12 completely.
Delete references 99, 131 and 144 and insert the following:

Page 45

Add new reference 161 under DEFRA/Environment Agency as:
Delete references 30, 39 and 40 completely.
Delete reference 41 and insert the following under Environment Agency:
Delete reference 42 and insert the following under Environment Agency:
Delete references 43, 71 under DEFRA/Environment Agency and insert:

Page 46

Delete references 8, 56 and 95 and insert the following:
Delete references 9 and 57 completely.
Delete reference 12 completely.

Pages 46
Delete reference 133 and replace with the following:
“133 Approved Document 7: Materials and Workmanship 2013 www.planningportal.gov.uk”

Pages 47, 48 and 49
Annex A: Guidance on the assessment of land affected by contaminants
Delete Annex A and Diagram A1 completely.

Inside rear cover page
APPROVED DOCUMENTS
Delete the existing title, text and reference list and insert the following:
“List of approved documents
The following documents have been published to give practical guidance about how to meet the Building Regulations. You can find the date of the edition approved by the Secretary of State at www.gov.uk/dclg.

Approved Document A
Structure

Approved Document B: Volume 1
Fire safety – Dwellinghouses

Approved Document B: Volume 2
Fire safety – Buildings other than dwellinghouses

Approved Document C
Site preparation and resistance to contaminants and moisture

Approved Document D
Toxic substances

Approved Document E
Resistance to the passage of sound

Approved Document F
Ventilation

Approved Document G
Sanitation, hot water safety and water efficiency

Approved Document H
Drainage and waste disposal

Approved Document J
Combustion appliances and fuel storage systems

Approved Document K
Protection from falling, collision and impact

Approved Document L1A
Conservation of fuel and power in new dwellings

Approved Document L1B
Conservation of fuel and power in existing dwellings

Approved Document L2A
Conservation of fuel and power in new buildings other than dwellings

Approved Document L2B
Conservation of fuel and power in existing buildings other than dwellings

Approved Document M
Access to and use of buildings

Approved Document P
Electrical Safety – Dwellings

Approved Document 7
Materials and workmanship”