PRELIMINARY FLOOD RISK ASSESSMENT

DRAIN LONDON

LONDON BOROUGH OF BRENT

GREATER LONDON AUTHORITY
This report has been prepared for the London Borough of Brent in accordance with the terms and conditions of appointment as part of the Drain London Tier 2 contract with the Greater London Authority dated October 2010. Hyder Consulting (UK) Limited (2212959) cannot accept any responsibility for any use of or reliance on the contents of this report by any third party.
Executive Summary

This Preliminary Assessment Report (PAR) is a key document informing the preparation of future Local Flood Risk Management Strategies as required by the Flood and Water Management Act 2010 (FWMA). This PAR identifies key flood risk areas within the London Borough of Brent (LBB). This document fulfils the LBB’s obligations as a Lead Local Flood Authority (LLFA) under the requirements of the Flood Risk Regulations 2009 (FRR).

The PAR along with the supporting Annex spreadsheets and figures fulfil the first stage Preliminary Flood Risk Assessment (PFRA) requirements of the Regulations. The PFRA is a high level screening exercise that brings together easily available information from a number of sources to assess local flood risk. As LLFA, LBB are required to submit their PFRA to the Environment Agency by 22 June 2011.

DEFRA and WAG have established a series of significance and threshold criteria to define flood risk areas in the UK. Guidance on applying these thresholds has been provided by DEFRA. The Environment Agency used the DEFRA criteria to develop a national dataset which identified Indicative Flood Risk Areas. The LBB falls within the Greater London Indicative Flood Risk Area.

For the PFRA all readily available data was collated from key stakeholders within the LBB. This allowed for the identification of significant historic flood events within the borough. There were several limitations associated with the stakeholder data. The main issues related to inconsistent and incomplete records. These issues resulted in limited knowledge of flooding sources and the consequences of events. From the information collated only a handful of events were considered to have had ‘significant harmful consequences’. These have been summarised in Annex 1 of the Preliminary Assessment spreadsheet.

Future flood risk within LBB has been assessed by looking at the borough as a whole and assessing potential risk areas based on a variety of local flooding sources. The surface water mapping and the Increased Potential for Elevated Groundwater (iPEG) datasets derived as part of the Drain London project were used to identify areas at risk. The Environment Agency’s Areas Susceptible to Surface Water Flooding (ASiSWF), Flood Map for Surface Water (FMfSW), Fluvial Flood Zones and the British Geological Society’s Groundwater Susceptibility Maps were also assessed but the Drain London datasets were the primary data sources.

This analysis has shown that there is a high risk of flooding from multiple sources across the LBB. The highest risk areas are within the main river valleys where the surrounding areas are at risk of fluvial, surface water and groundwater flooding. Future flood risk has been summarised in Annex 2 of the Preliminary Assessment spreadsheet.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
</tr>
<tr>
<td>1 Introduction</td>
</tr>
<tr>
<td>1.1 What is a Preliminary Flood Risk Assessment?</td>
</tr>
<tr>
<td>1.2 Background</td>
</tr>
<tr>
<td>1.3 Objectives</td>
</tr>
<tr>
<td>1.4 Study Area – Geography Extent</td>
</tr>
<tr>
<td>1.5 Study Area – Demographics</td>
</tr>
<tr>
<td>2 Lead Local Authority Responsibilities</td>
</tr>
<tr>
<td>2.1 Legislative Background</td>
</tr>
<tr>
<td>2.2 Leadership and Partnership</td>
</tr>
<tr>
<td>2.3 Stakeholder Engagement</td>
</tr>
<tr>
<td>2.4 Public Engagement</td>
</tr>
<tr>
<td>2.5 Other Responsibilities</td>
</tr>
<tr>
<td>3 Methodology and Data Review</td>
</tr>
<tr>
<td>3.1 Data Sources</td>
</tr>
<tr>
<td>3.2 Availability</td>
</tr>
<tr>
<td>3.3 Limitations</td>
</tr>
<tr>
<td>3.4 Security, Licensing and Use Restrictions</td>
</tr>
<tr>
<td>3.5 Quality Assurance</td>
</tr>
<tr>
<td>4 Past Flood Risk</td>
</tr>
<tr>
<td>4.1 Summary of Past Floods</td>
</tr>
<tr>
<td>4.2 Significant Harmful Consequences</td>
</tr>
<tr>
<td>4.3 Interactions with Other Flooding Sources</td>
</tr>
<tr>
<td>5 Future Flood Risk</td>
</tr>
<tr>
<td>5.1 Summary of Future Flood Risk</td>
</tr>
<tr>
<td>5.2 Locally Agreed Surface Water Information</td>
</tr>
<tr>
<td>5.3 Impact of Climate Change</td>
</tr>
<tr>
<td>5.4 Impact of Future Development</td>
</tr>
<tr>
<td>6 Review of Indicative Flood Risk</td>
</tr>
<tr>
<td>6.1 Extent of FRA</td>
</tr>
<tr>
<td>6.2 Review of Comments</td>
</tr>
<tr>
<td>7 Identification of Flood Risk Areas</td>
</tr>
<tr>
<td>7.1 Amendments of FRA</td>
</tr>
</tbody>
</table>
Tables
Table 1-1 Summary of stages of activity required as part of the European Floods Directive
Table 2-1 Stakeholders involved in the PFRA process
Table 2-2 LLFA responsibilities under the FRR and FWMA (Brown boxes have yet to be commenced into UK law)
Table 3-1 Stakeholders contacted and the information provided
Table 4-1 Significant flood events in the London Borough of Brent
Table 5-1 Flood risk threshold used to identify future consequences of flooding

Figures
Figure 1-1 London Borough of Brent Boundary
Figure 1-2 Areas for regeneration in the London Borough of Brent
Figure 1-3 Key Spatial Development Strategy
Figure 4-1 Surface Water Historic Flood Incidents
Figure 4-2 Historic Fluvial Flood Incidents
Figure 4-3 Historic Ground Water Flood Incidents
Figure 4-4 DG5 Sewer Flood Incidents
Figure 5-1 EA Areas Susceptible to Surface Water Flooding
Figure 5-2 EA Flood Map for Surface Water
Figure 5-3 Environment Agency Flood Zones
Figure 5-4 BGS Groundwater Susceptibility Maps
Figure 5-5 Drain London 1 in 200 year Rainfall Event Depth Grid
Figure 5-6 Drain London 1 in 200 year Rainfall Event Hazard Grid
Figure 5-7 Increased Potential for Elevated Groundwater
Figure 5-8 Cartoon illustrating the difference between fluvial and groundwater mapping
Figure 5-9 Drain London 1 in 100 year Rainfall Event plus Climate Change Depth Grid
Figure 6-1 National Indicative Flood Risk Areas
Figure 6-2 Greater London Indicative Flood Risk Area
Figure 6-3 Amendments proposed to the Greater London Indicative Flood Risk Area
Figure 8-1 Stage 1 – Basic flood event data collection
Figure 8-2 Stage 2 & 3– More detailed flood event information and initial investigation log
Figure 8-3 Stage 4– Allows for the inclusion of more detailed flood event investigation information
Annexes

Annex 1 – Past Floods
Annex 2 – Future Floods
Annex 3 – Flood Risk Areas
Annex 4 – Review Checklist
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aquifer</td>
<td>A source of groundwater comprising water bearing rock, sand or gravel capable of yielding significant quantities of water.</td>
</tr>
<tr>
<td>AMP</td>
<td>Asset Management Plan</td>
</tr>
<tr>
<td>Asset Management Plan</td>
<td>A plan for managing water and sewerage company (WaSC) infrastructure and other assets in order to deliver an agreed standard of service.</td>
</tr>
<tr>
<td>ASISWF</td>
<td>Areas Susceptible to Surface WaterFlooding</td>
</tr>
<tr>
<td>Catchment Flood Management Plan</td>
<td>A high-level planning strategy through which the Environment Agency works with their key decision makers within a river catchment to identify and agree policies to secure the long-term sustainable management of flood risk.</td>
</tr>
<tr>
<td>CDA</td>
<td>Critical Drainage Area</td>
</tr>
<tr>
<td>CFMP</td>
<td>Catchment Flood Management Plan</td>
</tr>
<tr>
<td>CiRIA</td>
<td>Construction Industry Research and Information Association</td>
</tr>
<tr>
<td>Civil Contingencies Act</td>
<td>This Act delivers a single framework for civil protection in the UK. As part of the Act, Local Resilience Forums must put into place emergency plans for a range of circumstances including flooding.</td>
</tr>
<tr>
<td>CLG</td>
<td>Government Department for Communities and Local Government</td>
</tr>
<tr>
<td>Climate Change</td>
<td>Long term variations in global temperature and weather patterns caused by natural and human actions.</td>
</tr>
<tr>
<td>Critical Drainage Area</td>
<td>Areas of significant flood risk, characterised by the amount of surface runoff that drains into the area, the topography and hydraulic conditions of the pathway (e.g. sewer, river system), and the receptors (people, properties and infrastructure) that may be affected.</td>
</tr>
<tr>
<td>Culvert</td>
<td>A channel or pipe that carries water below the level of the ground.</td>
</tr>
<tr>
<td>Defra</td>
<td>Department for Environment, Food and Rural Affairs</td>
</tr>
<tr>
<td>DEM</td>
<td>Digital Elevation Model</td>
</tr>
<tr>
<td>DG5 Register</td>
<td>A water-company held register of properties which have experienced sewer flooding due to hydraulic overload, or properties which are 'at risk' of sewer flooding more frequently than once in 20 years.</td>
</tr>
<tr>
<td>DTM</td>
<td>Digital Terrain Model</td>
</tr>
<tr>
<td>EA</td>
<td>Environment Agency</td>
</tr>
<tr>
<td>Indicative Flood Risk Areas</td>
<td>Areas determined by the Environment Agency as indicatively having a significant flood risk, based on guidance published by Defra and WAG and the use of certain national datasets. These indicative areas are intended to provide a starting point for the determination of Flood Risk Areas by LLFAs.</td>
</tr>
<tr>
<td>FMfSW</td>
<td>Flood Map for Surface Water</td>
</tr>
<tr>
<td>Flood defence</td>
<td>Infrastructure used to protect an area against floods as floodwalls and embankments; they are designed to a specific standard of protection (design standard).</td>
</tr>
<tr>
<td>Flood Risk Area</td>
<td>An area determined as having a significant risk of flooding in accordance with guidance published by Defra and WAG.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Flood Risk Regulations</td>
<td>Transposition of the EU Floods Directive into UK law. The EU Floods Directive is a piece of European Community (EC) legislation to specifically address flood risk by prescribing a common framework for its measurement and management.</td>
</tr>
<tr>
<td>Floods and Water Management Act</td>
<td>Part of the UK Government's response to Sir Michael Pitt's Report on the Summer 2007 floods, the aim of which is to clarify the legislative framework for managing surface water flood risk in England.</td>
</tr>
<tr>
<td>Fluvial Flooding</td>
<td>Flooding resulting from water levels exceeding the bank level of a main river</td>
</tr>
<tr>
<td>FRR</td>
<td>Flood Risk Regulations</td>
</tr>
<tr>
<td>IDB</td>
<td>Internal Drainage Board</td>
</tr>
<tr>
<td>IUD</td>
<td>Integrated Urban Drainage</td>
</tr>
<tr>
<td>LB</td>
<td>London Borough</td>
</tr>
<tr>
<td>LDF</td>
<td>Local Development Framework</td>
</tr>
<tr>
<td>Lead Local Flood Authority</td>
<td>Local Authority responsible for taking the lead on local flood risk management</td>
</tr>
<tr>
<td>LiDAR</td>
<td>Light Detection and Ranging</td>
</tr>
<tr>
<td>LLFA</td>
<td>Lead Local Flood Authority</td>
</tr>
<tr>
<td>Local Resilience Forum</td>
<td>A multi-agency forum, bringing together all the organisations that have a duty to cooperate under the Civil Contingencies Act, and those involved in responding to emergencies. They prepare emergency plans in a co-ordinated manner.</td>
</tr>
<tr>
<td>LPA</td>
<td>Local Planning Authority</td>
</tr>
<tr>
<td>LRF</td>
<td>Local Resilience Forum</td>
</tr>
<tr>
<td>Main River</td>
<td>A watercourse shown as such on the Main River Map, and for which the Environment Agency has responsibilities and powers</td>
</tr>
<tr>
<td>NRD</td>
<td>National Receptor Dataset – a collection of risk receptors produced by the Environment Agency</td>
</tr>
<tr>
<td>Ordinary Watercourse</td>
<td>All watercourses that are not designated Main River, and which are the responsibility of Local Authorities or, where they exist, IDBs</td>
</tr>
<tr>
<td>Partner</td>
<td>A person or organisation with responsibility for the decision or actions that need to be taken.</td>
</tr>
<tr>
<td>PFRA</td>
<td>Preliminary Flood Risk Assessment</td>
</tr>
<tr>
<td>Pitt Review</td>
<td>Comprehensive independent review of the 2007 summer floods by Sir Michael Pitt, which provided recommendations to improve flood risk management in England.</td>
</tr>
<tr>
<td>Pluvial Flooding</td>
<td>Flooding from water flowing over the surface of the ground; often occurs when the soil is saturated and natural drainage channels or artificial drainage systems have insufficient capacity to cope with additional flow.</td>
</tr>
<tr>
<td>PPS25</td>
<td>Planning and Policy Statement 25: Development and Flood Risk</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Resilience Measures</td>
<td>Measures designed to reduce the impact of water that enters property and businesses; could include measures such as raising electrical appliances.</td>
</tr>
<tr>
<td>Resistance Measures</td>
<td>Measures designed to keep flood water out of properties and businesses; could include flood guards for example.</td>
</tr>
<tr>
<td>Risk</td>
<td>In flood risk management, risk is defined as a product of the probability or likelihood of a flood occurring, and the consequence of the flood.</td>
</tr>
<tr>
<td>Risk Management Authority</td>
<td>As defined by the Floods and Water Management Act</td>
</tr>
<tr>
<td>RMA</td>
<td>Risk Management Authority</td>
</tr>
<tr>
<td>Sewer flooding</td>
<td>Flooding caused by a blockage or overflowing in a sewer or urban drainage system.</td>
</tr>
<tr>
<td>SFRA</td>
<td>Strategic Flood Risk Assessment</td>
</tr>
<tr>
<td>Stakeholder</td>
<td>A person or organisation affected by the problem or solution, or interested in the problem or solution. They can be individuals or organisations, includes the public and communities.</td>
</tr>
<tr>
<td>SuDS</td>
<td>Sustainable Drainage Systems</td>
</tr>
<tr>
<td>Sustainable Drainage Systems</td>
<td>Methods of management practices and control structures that are designed to drain surface water in a more sustainable manner than some conventional techniques.</td>
</tr>
<tr>
<td>Surface water</td>
<td>Rainwater (including snow and other precipitation) which is on the surface of the ground (whether or not it is moving), and has not entered a watercourse, drainage system or public sewer.</td>
</tr>
<tr>
<td>SWMP</td>
<td>Surface Water Management Plan</td>
</tr>
<tr>
<td>TfL</td>
<td>Transport for London</td>
</tr>
<tr>
<td>TWUL</td>
<td>Thames Water Utilities Ltd</td>
</tr>
<tr>
<td>WaSC</td>
<td>Water and Sewerage Company</td>
</tr>
</tbody>
</table>
1 Introduction

1.1 What is a Preliminary Flood Risk Assessment?

The Preliminary Flood Risk Assessment (PFRA) is a high level screening exercise that brings together information from a number of sources to assess local flood risk. The key stages of PFRA involve:

- Collecting information on past (historic) and future (potential) floods and flood risk.
- Assembling the information into a Preliminary Assessment Report (PAR).
- Identification of Flood Risk Areas by reviewing the national indicative areas produced by the Environment Agency alongside local information from the Preliminary Assessment Report.

This PAR is a key document informing the preparation of future Local Flood Risk Management Strategies as required by the Flood and Water Management Act 2010 (FWMA)\(^\text{iv}\). This PAR identifies key flood risk areas within the London Borough of Brent (LBB). This document fulfils the LBB’s obligations as the Lead Local Flood Authority (LLFA) under the requirements of the Flood Risk Regulations 2009 (FRR)\(^v\).

1.2 Background

The FRR came into force in December 2009 with the aim of implementing the requirements of the European Floods Directive\(^vi\) in England and Wales. The aim of the Directive is to provide a consistent approach to managing flood risk across Europe. It establishes four stages of activity within a six year flood management cycle (Table 1-1).

<table>
<thead>
<tr>
<th>Stages</th>
<th>Delivery Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminary Assessment Report (PFRA)</td>
<td>By December 2011</td>
</tr>
<tr>
<td>Develop Flood Risk Areas based on the PFRA findings</td>
<td>By December 2011</td>
</tr>
<tr>
<td>Derive Flood Hazard and Risk Mapping for each Flood Risk Area</td>
<td>By December 2013</td>
</tr>
<tr>
<td>Develop an effective Flood Risk Management Plan for each Flood Risk Area</td>
<td>By December 2015</td>
</tr>
</tbody>
</table>

Table 1-1 Summary of stages of activity required as part of the European Floods Directive

This PFRA has been undertaken on behalf of Brent, by Hyder and AECOM as part of the Drain London programme.

The FRRs define new responsibilities for flood risk management based on the recommendations of the Pitt Review\(^vii\) and are included within the FWMA. Under these legislative items, all Upper Tier Authorities (including the London Boroughs) are designated a LLFA. As such, LBB has been allocated a number of key responsibilities with respect to local flood risk management. A fuller description of these responsibilities is given in Chapter 2.

The scope of the PFRA is to consider past flooding and possible future flooding from surface water runoff, groundwater and ordinary watercourses in LBB.

The PFRA must consider floods which have **SIGNIFICANT** harmful consequences for human health, economic activity and the environment. The work will also assess the existing Indicative Flood Risk Areas as designated by the EA and determine if any amendments should be made to this dataset.
As identified in Part 2 of the FRR, flooding associated with the sea, main rivers and reservoirs is the responsibility of the Environment Agency and does not need to be considered by the LLFA as part of the PFRA process, unless it is considered that it may affect flooding from local flood sources.

1.3 Objectives

The aim of this document is to fulfil LBB’s obligations as the LLFA under the requirements of the FRR. The PFRA aims to locate areas in which the risk of surface water, ordinary watercourse and groundwater flooding is significant and warrants further examination through the production of maps and management plans.

The aim of this PFRA is to provide an assessment of local flood risk across the study area, including information on past floods and the potential consequences of future floods. The key objectives can be summarised as follows:

- Identify relevant partner organisations involved in future assessment of flood risk; and summarise means of future and ongoing stakeholder engagement;
- Describe arrangements for partnership and collaboration for ongoing collection, assessment and storage of flood risk data and information;
- Provide a summary of the systems used for data sharing and storing, and provision for quality assurance, security and data licensing arrangements;
- Summarise the methodology adopted for the PFRA with respect to data sources, availability and review procedures;
- Assess historic flood events within the study area from local sources of flooding (including flooding from surface water, groundwater and ordinary watercourses), and the consequences and impacts of these events;
- Establish an evidence base of historic flood risk information, which will be built up on in the future and used to support and inform the preparation of LBB’s Local Flood Risk Strategy;
- Assess the potential harmful consequences of future flood events within the study area;
- Review the provisional national assessment of indicative Flood Risk Areas provided by the Environment Agency and provide explanation and justification for any amendments required to the Flood Risk Areas.

1.4 Study Area – Geography Extent

The Brent PFRA study area covers approximately 4,310 hectares of North West London (Figure 1-1). The study area includes the urban areas of Brondesbury Park, Kensal Rise, Kenton, Kilburn, Kingsbury, Sudbury, Wembley and Willesden.
Brent is bordered by the London Boroughs of Barnet, Camden, Westminster, Kensington and Chelsea, Hammersmith and Fulham, Ealing and Harrow.

The study area falls within the Thames River Basin District and is served by one water only company – Veolia Water Central Limited and one Water and Sewerage Company - Thames Water Utilities Limited. The study area is served by the Environment Agency South East Region and is part of the Thames Regional Flood and Coastal Committee. The LBB shares a member with Barnet, Harrow and Hillingdon on the Thames committee.

1.5 Study Area – Demographics

Based on the 2001 Census the population of Brent was 263,454. In 2006 the GLA re-estimated the population of the borough to be approximately 278,500. There are approximately 108,000 households in the borough (LBB Core Strategy, 2010). By 2016/2017 the number of new homes within the borough is set to increase by 11,200 according to the London Plan (2009) housing capacity targets.

As part of the London Plan the following areas were identified as potential regeneration areas within the borough: Barnhill, Dudden Hill, Harlesden, Kensal Green, Kilburn, Stonebridge, Welsh Harp and Wembley (Figure 1-2).
The Brent Core Strategy document outlines more specific key growth areas within the borough along with the major urban areas (Figure 1-3).
2 Lead Local Authority Responsibilities

One of the main responsibilities of the LLFA is to produce a PFRA. They are also responsible for the coordination of flood risk management.

2.1 Legislative Background

The Flood Risk Regulations 2009 transposes the requirement of the EU Floods Directive into UK law in England and Wales. The aim of the Directive is to provide a consistent approach to managing flood risk across Europe. It establishes four stages of activity within a six year flood risk management cycle.

The Flood and Water Management Act (FWMA) 2010 defines new responsibilities for flood risk management based on the recommendations of the Pitt Review. As the LLFA, LBB is responsible for managing risk from the following local flood sources: surface water, groundwater and ordinary watercourses. The Environment Agency is responsible for managing risk from main rivers, the sea and large raised reservoirs.

The aim of this PFRA is to fulfil LBB’s obligations as the LLFA, to meet their duties to manage local flood risk and deliver the requirements of the flood risk regulations.

2.1.1 Links to other Legislative Background

The FWMA aims to improve flood risk management and the way we manage our water resources. The Act gives the Environment Agency responsibility for producing a national strategy for Flood and Coastal Erosion Risk Management (FCERM). The Welsh Assembly Government (WAG) are responsible for producing the national strategy in Wales.

The national strategies will provide the framework for local strategies which LLFAs are to develop and implement under the Act. These will be based on assessments of risk which should incorporate evidence gathered as part of the PFRA process.

SWMP’s consider flood risk from surface runoff, groundwater and ordinary watercourses and the interaction with flooding from main rivers, the sea and sewers. The aim of a SWMP is to provide greater understanding of local flood risk and to develop action plans to manage the risks. This will help inform development, detail where more detailed work is required to assist in the preparation of flood risk management plans. There is a SWMP currently underway for the LBB area as part of the drain London Tier 2 works, where all 33 London Boroughs are undertaking the development of SWMPs. The outputs from both of these studies will be used to support and inform the next stages of the requirements of the FRR and the FWMA.

The Strategic Environmental Assessment (SEA) Directive (2001/42/EC) is implemented in the UK by ‘The Environmental of Plans and Programmes regulations’ 2004. Its objective is ‘to provide for a high level of protection of the environment and to contribute to the integration of environmental considerations into the preparation and adoption of plans and programmes with a view to promoting sustainable development’.

The flood risk management plans required under the Flood Risk Regulations fall under the scope of the SEA Directive. The Flood Risk Regulations to a large extent build in the consideration of the environment as the preliminary assessment report and the selection of Flood Risk Areas must consider significant consequences of flooding on the environment. Information collected during the PFRA can be used to develop the SEA documentation later in the process.
The INSPIRE Directive (2007/2/EC) is implemented in the UK by the INSPIRE Regulations 2009. Its main aim is to improve the quality, consistency and accessibility of spatial data sets and services for environmental data to ensure they can be shared and integrated seamlessly into applications with minimal manual intervention. The PFRA should be carried out in accordance with the general principles of INSPIRE.

2.2 Leadership and Partnership

As the designated LLFA, LBB is responsible for leading local flood risk management across the borough. Much of the local knowledge and technical expertise necessary for the LBB to fulfil their duties as LLFA lies with partner organisations. It is therefore crucial LBB works alongside these partner organisations to ensure effective and consistent management of local flood risk through the borough, which contributes to the provision of a coordinated and holistic approach to flood risk management across the borough.

As the designated LLFA, LBB is responsible for forging effective partnerships with Thames Water and the Environment Agency, as well as other key stakeholders and risk management authorities.

As well as the neighbouring Group 2 Boroughs of Barnet and Harrow, Brent also has a responsibility to partner with other key stakeholders and risk management authorities, who share the responsibility for decisions and actions. Currently, the informal relationships established within the context of the Drain London programme are being formalised to deliver a North West London Flood Risk Management Partnership (which will also include the Boroughs of Ealing, Hillingdon and Hounslow).

This Partnership should be formalised to ensure clear lines of communication, mutual co-operation and management through the provision of Level of Service Agreements (LoSA) or Memorandums of Understanding (MoU).

Currently LBB have internal relationships across a number of departments to deal with surface water flooding issues. As part of the SWMP process they intend to formalise their influence on external groups.

This partnership structure is ‘fluid’ and evolving – as the Borough advances into the role of managing local flood risk in this new way, groups and committees may change in format, membership and frequency to reflect new requirements and ways of working, and partners and stakeholders may change.

The partnership approach set out in this PFRA will need to be ratified over time and potentially adjusted as appropriate in the future to accommodate these changes, the most relevant and immediate of which will be the effects of changes to the resilience forum laws under GLA.
2.3 Stakeholder Engagement

As part of the PFRA, the Drain London Group 2 sought to engage stakeholders representing the following organisations and authorities and where relevant comments on the PFRA have been received and incorporated.

- London Borough of Barnet (including development planning, engineering services, and emergency planning);
- Greater London Authority (also representing the Drain London partnership);
- Environment Agency
- Thames Water
- Transport for London

All the above stakeholders were made aware of the study and were encouraged to provide input into the study where possible. There have been regular meetings which involved the Group 2 borough councils and key stakeholders to keep them up to date with progress and to encourage discussions between the stakeholders.

In addition to the stakeholder engagement undertaken as outlined above as part of Tier 2 work, further engagement with stakeholders will be required during Tier 3 when local flood risk management plans are formulated for the Flood Risk Areas identified during this PFRA. It is envisaged that the following stakeholders will need to be involved in Tier 3 include:

- Transport for London
- Highways Agency
- Network Rail
- London Fire Brigade
- Natural England
- London Underground
- Chamber of Commerce and Retailers
- Association of British Insurers
- Homes and Communities Agency
- Riparian owners
- Developers or regeneration agencies
- Local community and interest groups
- General public (see section 2.4)

2.4 Public Engagement

It is important to incorporate public engagement into local flood risk management planning. The public can provide invaluable information which can aid the development of more effective management strategies. By keeping the public informed of future flood risk management plans can help to build trust between the public and the local government.

Subsequent stages of this process, will require increasing levels of public engagement, particularly during the formulation of the local flood risk management plans (for the Flood Risk Areas within LBB) as this will help to inform future levels of public engagement. It is recommended that LBB follow the guidelines outlined in the Environment Agency’s ‘Building Trust with Communities’ document which provides a useful process of how to communicate risk including the causes, probability and consequences to the general public and professional forums such as local resilience forums.
As the overarching lead for local flood risk management within the Borough, LBB is responsible for driving the communication of risk to stakeholders and the public by producing and disseminating literature and undertaking communication and engagement events and activities as appropriate.

2.5 Other Responsibilities

Aside from forging partnerships and coordinating and leading on local flood management, there are a number of other key responsibilities that have arisen for LLFA from the FWMA and FRR. These responsibilities include:

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asset Register</td>
<td>LLFAs have a duty to maintain a register of structures or features which are considered to have an effect on flood risk, including details on ownership and condition as a minimum. The register must be available for inspection and the Secretary of State will be able to make regulations about the content of the register and records.</td>
</tr>
<tr>
<td>Designation powers</td>
<td>LLFAs, as well as the Environment Agency have powers to designate structures and features that affect flooding or coastal erosion in order to safeguard assets that are relied upon for flood or coastal erosion risk management.</td>
</tr>
<tr>
<td>Investigating flood incidents</td>
<td>LLFAs have a duty to investigate and record details of significant flood events within their area. This duty includes identifying which authorities have flood risk management functions and what they have done or intend to do with respect to the incident, notifying risk management authorities where necessary and publishing the results of any investigations carried out. Further information with respect to this duty is provided in Chapter 7.</td>
</tr>
<tr>
<td>Local Strategy for Flood Risk Management</td>
<td>LLFAs are required to develop, maintain, apply and monitor a local strategy for flood risk management in its area. The local strategy will build upon information such as national risk assessments and will use consistent risk based approaches across different local authority areas and catchments</td>
</tr>
<tr>
<td>SuDS Approval Body</td>
<td>LLFAs are designated the SuDS Approving Body (SAB) for any new drainage system, and therefore must approve, adopt and maintain any new sustainable drainage systems (SuDS) within their area</td>
</tr>
<tr>
<td>Works powers</td>
<td>LLFAs have powers to undertake works to manage flood risk from surface runoff and groundwater, consistent with the local flood risk management strategy for the area</td>
</tr>
</tbody>
</table>

Table 2.1 LLFA Responsibilities under the FRR and FWMA (Brown boxes have yet to be commenced into UK law)
3 Methodology and Data Review

The approach for producing this PFRA was based upon the Environment Agency’s PFRA Final Guidance, which was released in December 2010, and as required within the guidance this PFRA is based on readily available or derivable data.

3.1 Data Sources

A number of stakeholders were consulted and provided information used to inform this PFRA. A list of the stakeholders is below along with a summary of the data provided.

<table>
<thead>
<tr>
<th>Stakeholder</th>
<th>Information Provided</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Publicly Available</td>
</tr>
<tr>
<td>British Geological Society</td>
<td>Susceptibility to ground water flooding maps, permeability maps</td>
</tr>
<tr>
<td>British Waterways</td>
<td>BW canals network, GIS dataset showing historic overtopping and breaches</td>
</tr>
<tr>
<td>LBB</td>
<td>Brent IUD (2008), Brent SFRA (2007), Barnet Core Strategy (2010)</td>
</tr>
<tr>
<td></td>
<td>Ordinary watercourses, critical infrastructure (fire stations, schools etc), historical flooding locations, transport infrastructure</td>
</tr>
<tr>
<td>London Fire Brigade</td>
<td>Flood incident database</td>
</tr>
<tr>
<td>London Underground</td>
<td>Pump site data, station flood risk summary</td>
</tr>
<tr>
<td>Greater London Authority</td>
<td>London Plan data including proposed regeneration and intensification areas</td>
</tr>
<tr>
<td></td>
<td>Administrative boundaries, OS 10k and 50k Mapping, OS Master Maps, LiDAR</td>
</tr>
<tr>
<td>Highways Agency</td>
<td>Asset data, flood hot spot locations</td>
</tr>
<tr>
<td>Environment Agency</td>
<td>National Receptor Databases, historical flood outlines, modelled flood event outlines, flood affected properties, main rivers, detailed river network, groundwater flooding incidents</td>
</tr>
<tr>
<td>Natural England</td>
<td>SACs, SSSIs, SPAs, Ancient woodland, LNRs, NNRs, RAMSARs, woodland, agricultural land classifications</td>
</tr>
<tr>
<td>National Health Service</td>
<td>Health Trust Maps</td>
</tr>
<tr>
<td>Network Rail</td>
<td>National Rail Network map</td>
</tr>
<tr>
<td>Thames Water</td>
<td>Sewerage networks, asset information and DG5 register</td>
</tr>
<tr>
<td>Transport for London</td>
<td>Main transport links within the Greater London area</td>
</tr>
</tbody>
</table>
Table 3-1 Stakeholders contacted and the information provided

3.2 Availability

All relevant stakeholders within the LBB were contacted to collate as much readily available information as possible about the borough. There were several limitations with the available data which are outlined below.

3.3 Limitations

There are a number of limitations with the data provided for this PFRA. The intention of the report is to collect readily available data this data has been used as provided. It is recommended that the issues identified below will act as a reminder to those involved in local Flood Risk Management to improve the calibre of flood risk information going forward. A number of issues that are common across London Boroughs are summarised below:

3.3.1 Incomplete and inconsistent recording of data

The most significant limitation relates to the lack of specific event information provided within the flood incident records. There was a lack of consistency regarding the amount of detail provided across all the stakeholders involved with Flood Risk Management for the study area. The amount of detail provided regarding each incident is not consistent. The council were also only able to provide data relating to flooding that occurred in July 2007.

Specifically:

- There is limited knowledge related to flooding from ordinary watercourses within the borough boundary
- Limited information regarding the dates of flood events.

As such, it is felt that the evidence collated to date is not complete and that they are unlikely to accurately represent the whole picture for flood risk issues across the study area. This will have a follow on effect of hindering the identification or alteration of the indicative flood risk areas proposed by the Environment Agency.

3.3.2 Quality of data recorded

As a result of the inconsistent recording of data, the quality of data varied within the datasets collated during the PFRA process. For example, a comprehensive dataset was received from the London Fire Brigade containing dates of call outs from a ‘Flood’. However, this dataset was of little use in its current format as the dataset does not provide any detail about each recorded event and ‘flood’ could refer to a multitude of causes ranging from a flooded kitchen caused from a mechanical failure to a major fluvial/pluvial event.

The EA groundwater flooding incident database contained a lot of isolated incidents of groundwater flooding. Within the LBB a majority of the events logged related to waterlogging/ponding in peoples gardens. It is difficult to determine if this is a localised drainage issue or a genuine groundwater flooding incident.
3.3.3 Consequences

Very few details were provided as to the consequences of specific historic flood events, making the assessment of the past significant events difficult to undertake.

3.4 Security, Licensing and Use Restrictions

A majority of the data provided for this study has been specifically provided for this study (for use by the LLFA and their consultants) is not publicly available; therefore there are restrictions on data use. A number of specific agreements have been put in place for the PFRA and SWMP to facilitate the sharing of data between partners:

- GIS licences for mapping and data supplied by LBB
- British Geological Society (BGS) licence for geological data supplied by GIS - Usage limited to work undertaken on behalf of GLA. Specific conditions relating to use of DIGMap
- British Waterways - Canal network is only for use by Tier 2 Consultants for the SWMPs as part of Drain London programme.
- Environment Agency - Data was supplied with the restriction “access only for: GLA, Local Authorities and their consultants for Geo-Portal. Only for surface water management plans, strategic flood risk assessments or preliminary flood risk assessments”.
- GLA – Only to be used for Drain London programme and in accordance with OS Contractor License issued by GLA.
- Highways Agency - Data provided to GLA for use under Drain London programme. Users must abide to the Memorandum of Understanding.
- London Fire Brigade - Only to be viewed by the Council and Tier 2 consultants
- London Underground – Subject to own Terms & Conditions
- Network Rail - Only to be viewed by the Council and Tier 2 consultants
- National Health Service – None Identified
- Transport for London – None Identified
- Thames Water - All data subject to conditions. Sewer flooding incidents (DG5 register) were supplied collated by 4 figure postcode area in order to prevent identification of individual properties at risk

3.5 Quality Assurance

Flood historical data was assessed for its data quality and suitability for use in the Assessment of Significant Risk as per the Environment Agency’s PFRA Guidance. Further quality checks were undertaken as part of the PFRA in accordance with DEFRA guidance.
4 Past Flood Risk

Information provided by the stakeholders in Chapter 3 was collated and assessed to identify significant past flood events. The information was reviewed to establish the economic, environmental and cultural consequences of each event. This section summarises past floods with significant harmful consequences within the LBB.

It was anticipated that information would be provided in a geo-referenced format. However, this was not the case for some datasets, where possible data was geo-referenced. This made it possible to display this information using GIS software and overlay layers to identify the spatial distribution of historic flood events and relate these datasets to receptor information, in order to assess the overall flood risk.

4.1 Summary of Past Floods

In a majority of locations there was either property or critical infrastructure reportedly affected however little to no detail was given regarding property numbers or flood extent. The table below summarises significant past flooding events in the LBB based on a significance scale lower than that used to create the Indicative Flood Risk Areas (20 residential properties, 5 commercial properties or 1 key asset). This lower definition scale was discussed with the LBB and was deemed more appropriate as it would allow for the identification of localised risk areas within the borough. By using the IFRA significance criteria no past floods within the borough would have been listed.

<table>
<thead>
<tr>
<th>Location</th>
<th>Date (month/year)</th>
<th>Property Affected (number)</th>
<th>Critical Infrastructure Affected (name)</th>
<th>Source of Flooding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location unreported</td>
<td>03/2008</td>
<td>No</td>
<td>Yes (unknown)</td>
<td>Surface water, sewer network</td>
</tr>
<tr>
<td>Location unreported</td>
<td>01/2008</td>
<td>No</td>
<td>Yes (unknown)</td>
<td>Surface water, sewer network</td>
</tr>
<tr>
<td>Kenton, Kingsbury, Wembley,</td>
<td>07/2007</td>
<td>Yes (unknown)</td>
<td>Yes (unknown)</td>
<td>Surface water, sewer network and river</td>
</tr>
<tr>
<td>Willesden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location unreported</td>
<td>09/2006</td>
<td>No</td>
<td>Yes (unknown)</td>
<td>Surface water, sewer network</td>
</tr>
<tr>
<td>Kenton, Kingsbury, Wembley,</td>
<td>08/1977</td>
<td>Yes (490)</td>
<td>Yes (unknown)</td>
<td>Surface water, sewer network and river</td>
</tr>
<tr>
<td>Willesden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4-1 Significant Flood Events London Borough of Brent

More detailed records of past floods with significant harmful consequences are contained in Annex 1.

There have been a number of studies which have assessed the flood risk within the borough. These have predominantly focussed on fluvial flood risk from the main rivers, rather than looking at flooding from other sources.

4.1.1 Surface Water Runoff

Surface water flooding occurs when heavy rainfall exceeds the capacity of local drainage networks and water flows across the ground.

The LBB provided a log of flooding for the July 2007 event. The log provided a brief outline of the locations affected and stated if properties were affected but no numbers were given. Drawing number 2100-UA002334-BMD-02 summarises the Borough council historic flood incident records from the July 2007 event. The mapped incidents are widely distributed across the borough. The incident reports on the July 2007 event suggest that the main cause of flooding was a combination of surface water runoff and inadequate sewer capacity.

4.1.2 Ordinary Watercourses

Ordinary watercourses are all watercourses that are not designated Main River, and which are the responsibility of Local Authorities or, where they exist, IDBs.

The Brent SFRA (2007)xvi listed several major flood events on the River Brent (1928, 1977, 1988, 1990 and 2000) and on the Wealdstone Brook (15 flood events between 1928 and 1981). However both of these watercourses are Main River so are not included in this PFRA. No further information regarding the extent of the flooding or the consequences were reported so it was difficult to determine if there was any ordinary watercourse flooding in the LBB.

The Environment Agency historic fluvial flood outline maps are displayed in drawing number 2101-UA002334-BMD-02. The EA historic maps contain two flooding records for the River Brent. The largest outline was recorded for the January 1977 event with flooding extending into Tokyngton, Stonebridge and Alperton. The July 2007 event outline is smaller and only flooded the river floodplain at Tokyngton.

4.1.3 Groundwater

Groundwater flooding occurs as a result of water rising up from the underlying aquifer or from water flowing from abnormal springs. This tends to occur after long periods of sustained high rainfall, and the areas at most risk are often low-lying where the water table is more likely to be at shallow depth. Groundwater flooding is known to occur in areas underlain by major aquifers, although increasingly it is also being associated with more localised floodplain sands and gravels.

The LBB is underlain by a thick layer of London Clay. There are layers of gravel deposits interlaced into the clay which could provide a pathway for groundwater surcharge. The Environment Agency historic ground water flood incidents are displayed in drawing number 2102-UA002334-BMD-02. The dataset shows a large number of incidents across the LBB however a majority are reported as waterlogging/standing water in gardens rather than groundwater flooding to property. There is no particular correlation between the flooding
incidents, and a majority seem to be individual instances of flooding. This makes it difficult to establish a link between the groundwater incidents and other historic flooding incident records.

4.1.4 Sewer Flooding

Sewer flooding is often caused by excess surface water entering the drainage network. The North Brent IUD (2008)viii was designed to assess the drainage network in North Brent and Harrow. The report referred to fifteen sewer surcharge events resulting in property flooding on Belvedere Way; however no dates for these events were provided. A local resident, John Timms (MBE), provided a record of all sewer surcharge events from 1976 to 2004 on Belvedere Way. Unfortunately the record does not state which events resulted in property flooding.

Thames Water have provided their DG5 database for this area from which past sewer flooding incidents have been identified in the LBB.

The DG5 flooding from sewers database is a performance indicator used by Water Companies to report the number of properties at risk of flooding due to overloaded sewers to Ofwat. The database records flooding if it falls within one of the following two categories:

- Once every ten years
- Twice or more every ten years

Once a property is identified on the water companies DG5 register, it typically means that the water company can put funding in place to take properties off the DG5 register.

The DG5 sewer flood incidents for the LBB are displayed in drawing number 2110-UA002334-BMD-01. The DG5 data shows that the southern area of Kenton (postcode HA3 0) to the north west of the borough has the highest number of recorded sewer flooding incidents 51-100 records.

There are six other areas within the borough that also have a significant number of reported sewer flooding incidents (21-50 records). Two are to the west of the borough around Wembley (HA0 3 and HA9 8), two to the south of the borough in south Willesden (NW109 and NW102) and two other post code areas NW9 7 and NW6 5.

Based on the DG5 register the entire borough has experienced sewer flooding at some point with no postcode regions registering no recorded incidences. Two thirds of the borough has experienced less than 20 sewer flooding incidents in each four digit postcode region.

4.2 Significant Harmful Consequences

For the purpose of reporting past floods, a flood is deemed significant if it:

1) caused internal flooding to five or more residential properties, or
2) flooded two or more business premises, or
3) flooded one or more items of critical infrastructure, or
4) caused a transport link to be totally impassable for a significant period.

The definition of “significant period” is dependent on the transport link affected as follows (Highway categories are as set out in Table 1 of the UKRLG Code of Practice for Highway Maintenance).
- Category 1 highways (motorways) and major rail links – 2 hours or more
- Category 2 and 3a highways and other railway links – 4 hours or more
- Category 3b and 4a highways – 10 hours or more
- Category 4b highways – 24 hours or more

As a result of the issues discussed in section 3.3, insufficient data is available to draw definitive conclusions on the impacts and consequences of historic flood events on people, the economy and the environment, as this information has not been recorded in the past.

4.3 Interactions with Other Flooding Sources

An integrated urban drainage study for North Brent was undertaken by MWH in 2008. The IUD assessed flooding from multiple sources and integrated these into one model. This method of assessment allowed for a better understanding of impacts of flooding source interactions on both a local and catchment wide scale. The integrated modelling approach allows for the assessment of more comprehensive options of flood mitigation. In some cases mitigation options may reduce the risk from one flood source but may exacerbate another, this integrated approach allows for the identification of these issues.
5 Future Flood Risk

As part of the PFRA future flood risk has been assessed within the LBB. This involved looking at the borough as a whole and assessing potential risk areas based on flooding from a variety of sources. The key aim of this is to identify areas which are not currently known from past flood incidents.

5.1 Summary of Future Flood Risk

The following datasets were used to determine the Future Flooding Risk in the LBB

1. Areas Susceptible to Surface Water Flooding (Drawing number: 2103-UA002334-BMD-02)
2. Flood Map for Surface Water including 200 year and 30 year deep and shallow outlines (Drawing number: 2104-UA002334-BMD-02)
3. Fluvial Flood Zone 2 & 3 (Drawing number: 2105-UA002334-BMD-02)
5. Drain London Surface Water Flooding 1 in 200 year Depth and Hazard Grids (Drawing numbers: 2107-UA002334-BMD-01 and 2108-UA002334-BMD-01)

Detailed records of future floods and their possible consequences are given in Annex 2. Note that some properties fall within areas at risk of multiple sources of flooding so may have been double counted.

5.1.1 Surface Water Runoff

Environment Agency National Datasets

The Environment Agency has produced a series of mapping based on a national assessment of surface water flood risk. The ASTSWF (drawing number: 2103-UA002334-BMD-02) are a series of maps made up of three probability bandings for a 1 in 200 year rainfall event (Less, Intermediate and More). The ASTSWF was released in August 2008.

The FMfSW (drawing number: 2104-UA002334-BMD-02) are the second generation maps which were generated using improved modelling techniques in November 2010. The FMfSW represents two return periods the 1 in 30 year and 1 in 200 year.

The mapping for each return period has been split based on depth of flooding: shallow (0.1m-0.3m) and deep (>0.3m). A majority of the surface water mapped risk is within river corridors and so is similar to that outlined by the EA Flood Zones. There are isolated patches of surface water flooding predicted in other areas of the borough but these are small pockets of risk.

These datasets, along with the National Receptors Database v1.0 were used nationally to select the 10 Indicative Flood Risk Areas in England, of which LBB is part of the London area.
The surface water maps are not designed to assess the risks from other sources of flooding. However, as these datasets use a 2D representation of the ground, they route surface runoff into channels and depressions. As flooding is dependent on topography and depressions, flooding from ordinary watercourses and groundwater may occur in the same places as flooding from surface runoff.

Drain London LBB Surface Water Mapping

A Surface Water Management Plan (SWMP) is currently being completed for the LBB as part of the wider Drain London project. A direct rainfall model has been developed as part of this project to assess local surface water flood risk within the LBB. The full modelling methodology is outlined in the LBB SWMP report. The full modelling methodology is outlined in the LBB SWMP report, but in summary:

- Modelling was carried out in Tuflow following a direct rainfall approach. A standard 5m mesh size was used.
- Net (effective) rainfall was variable according to land surface and to the capacity of the sewerage system, set by Thames Water at 6.5mm/hour.
- The 3.33%, 1.33%, 1%, 1% allowing for climate change (a 30% increase in rainfall) and 0.5% annual probability rainfall events were run.
- Key 1D structures (in particular culverts inflowing from urban areas) were included where sufficient information was available. The sewerage system was not explicitly modelled.
- Main Rivers were assumed to be bank-full.

The surface water modelling validated using local Borough knowledge and through reference to the FMfSW shallow and deep outlines to establish if there was a correlation between the mapped areas identified at risk. There was a good match between the Drain London mapping and the EA FMfSW. The Drain London mapping identified clearer connections between areas of flooding as well as showing flow velocity and hazard.

The hazard mapping produced should be treated with caution as inconsistencies in the LiDAR surface as a result of inconsistent processing have resulted in areas where there is no surface water flooding being given a high hazard rating.

The 1 in 200 year depth grid is illustrated in drawing number 2107-UA002334-BMD-01 and the 1 in 200 year hazard grid is illustrated in drawing number 2108-UA002334-BMD-01.

The Drain London modelling methodology is an improvement on the national scale mapping generated by the EA. Therefore the modelled mapping from this study has been used as the main source of data to determine the significance of surface water flooding within the LBB.

Summary

Both the EA and Drain London surface water mapping identify the areas adjacent to the natural river valleys of the River Brent and Wealdstone Brook as the main areas at risk. Elsewhere minor watercourses, that have largely been subsumed into the below ground urban drainage system, remain as important pathways during extreme flows, such as Kenton Brook, Wembley Brook and Northwick Park Drain.

Flatter areas of the Borough (e.g. Dollis Hill, Kilburn, Willesden and Wembley) show flow pathways that are less defined, with ponding occurring in an irregular pattern, though generally not to a depth where large numbers of properties would be flooded. As such, this is an important item to note because surface water flood risk is not confined to specific areas of the Borough – all parts are susceptible to varying degrees and have some risk associated.
The Brent SFRA (2007) identified Wembley, Kingsbury, Kenton, Willesden, Kilburn and Kensal Rise as areas at high risk of surface water flooding as they are at the base of clearly defined slopes within the borough.

5.1.2 Groundwater

British Geological Society National Dataset

The BGS’s Areas Susceptible to Groundwater Flooding (ASTGWF), is a national dataset which highlights areas at risk of groundwater flooding.

The BGS classifies the areas susceptible to groundwater flooding in five categories:

- Very High
- High
- Moderate
- Low
- Very Low.

Drawing number: 2106-UA002334-BMD-02 illustrates the areas at risk of groundwater flooding within the LBB.

The ASTGWF highlights Tokyngton as being a high risk area within the borough. The other areas shown to be at risk lie adjacent to the main rivers where there is alluvial material which would allow groundwater recharge

Increased Potential for Elevated Groundwater (iPEG) Mapping

Background

Large areas within the Drain London area are underlain by permeable substrate and thereby have the potential to store groundwater. Under some circumstances groundwater levels can rise and cause flooding problems in subsurface structures or at the ground surface. The mapping technique described below aims to identify only those areas in which there is the greatest potential for this to happen and in which there is the highest possible confidence in the assessment.

The following four data sources have been utilised to produce the increased Potential for Elevated Groundwater map:

- British Geological Survey (BGS) Groundwater Flood Susceptibility Map;
- Jacobs Groundwater Emergence Maps (GEMs);
- Jeremy Benn Associates (JBA) Groundwater Flood Map; and
- Environment Agency/Jacobs Thames Estuary 2100 (TE2100) groundwater hazard maps.

To produce the iPEG map for consolidated aquifers, an area was defined as having increased potential for elevated groundwater levels if at least two of the three mapping techniques listed above produced a corresponding area. For the permeable superficial deposits, only Band 1
Very High of the BGS and the TE2100 data were used as this was judged to best represent the hazard.

The techniques used to generate the iPEG map produced some small areas of increased potential and some dry islands within increased potential areas. These have not been cleaned in order to best represent the original data.

How to Use and Interpret the Map

The increased Potential for Elevated Groundwater map shows those areas within the Borough where there is an increased potential for groundwater to rise sufficiently to interact with the ground surface or be within 2 m of the ground surface.

Groundwater may become elevated by a number of means:

- Above average rainfall for a number of months in Chalk outcrop areas;
- Shorter period of above average rainfall in permeable superficial deposits;
- Permeable superficial deposits in hydraulic continuity with high water levels in the river;
- Interruption of groundwater flow paths; and
- Cessation of groundwater abstraction causing groundwater rebound.

With the exception of groundwater rebound which is not covered, the iPEG map will identify those areas most prone to the mechanisms described above. The map shows those areas considered to have the greatest potential for elevated groundwater. Additional areas within the London Boroughs have permeable geology and therefore could also produce elevated groundwater levels. However, to produce a realistic map, only where there is the highest degree of confidence in the assessment are the areas delineated. This ensures resources are focused on the most susceptible areas. In all areas underlain by permeable substrate, groundwater should still be considered in planning developments.

Within the areas delineated, the local rise of groundwater will be heavily controlled by local geological features and artificial influences (e.g. structures or conduits) which cannot currently be represented. This localised nature of groundwater flooding compared with, say, fluvial flooding suggests that interpretation of the map should similarly be different. The map shows the area within which groundwater has the potential to emerge but it is unlikely to emerge uniformly or in sufficient volume to fill the topography to the implied level. Instead, groundwater emerging at the surface may simply runoff to pond in lower areas. The localised nature of groundwater flooding and the different interpretation of the maps required is illustrated in the cartoon in Figure 5.8.
For this reason within iPEG areas, locations shown to be at risk of surface water flooding are also likely to be most at risk of runoff/ponding caused by groundwater flooding. Therefore the iPEG map should not be used as a “flood outline” within which properties at risk can be counted. Rather it is provided, in conjunction with the surface water mapping, to identify those areas where groundwater may emerge and if so what would be the major flow pathways that water would take.

Results

The iPEG mapping is presented in drawing number 2109-UA002334-BMD-01. The iPEG data shows that the areas at most significant risk of groundwater flooding are located in and around the main rivers where there are alluvial deposits. The iPEG data in conjunction with the AStGWF have been used to determine future flood risk in the LBB.
5.1.3 Ordinary Watercourses

The Environment Agency national fluvial flood map has been used to assess future flood risk from ordinary watercourses in Brent. The areas at risk of fluvial flooding are illustrated in drawing number: 2105-UA002334-BMD-02.

The main areas identified as being at risk of fluvial flooding are located adjacent to the main rivers within the borough. There are no modelled outlines for the ordinary watercourses in the LBB.

5.1.4 Sewers

There is no local information available which provides evidence on future sewer flood risk across LBB. However from the Thames Water DG5 database it is clear that sewer flooding is an issue across the whole of the borough.

In the Brent SFRA, Thames Water highlighted that a majority of the sewer network in the Wembley area is undersized. The SFRA also mentioned the large number of under capacity cross connecting surface water and foul water sewers.

This is an existing problem which will only be made worse if further development takes place before changes are made to the sewer network. The study also highlighted areas near the Kenton Brook/Wealdstone confluence and Tokyngton near Wembley as being at significant risk of sewer/surface water flooding.

5.1.5 Potential Consequences of Future Flooding

The Environment Agency has used the Flood Map for Surface Water mapping and the National Receptors Database to identify a number of areas across the country that exceed a given threshold, described in Table 5-1.

<table>
<thead>
<tr>
<th>'Significant harmful consequences' defined as greater than...</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 people or 20 businesses or 1 Critical service</td>
<td>Flooded to a depth of 0.3m during a rainfall event with a 1 in 200 chance of occurring (or 0.5%)</td>
</tr>
</tbody>
</table>

Table 5-1 Flood risk threshold used to identify future consequences of flooding

This assessment was carried out based on 1km² national grid squares, and the grid squares that exceed this criterion were identified. The areas that fall within these grid squares are considered to be at severe risk of flooding.

The potential consequences on key flood risk indicators (as discussed in Table 3-1) have been assessed by the Environment Agency; this information has been included in Annex 2 of the Preliminary Assessment Spreadsheet.

5.2 Locally Agreed Surface Water Information

Locally agreed surface water information is defined as surface water flood risk data that has been reviewed and discussed by the LLFA in conjunction with the Environment Agency, Thames Water and any other interested parties. The locally agreed surface water information
being used for this PFRA is the Drain London Surface Water Mapped Outputs and the Increased Potential for Elevated Groundwater Map.

The Environment Agency’s Areas Susceptible to Surface Water Flooding (ASiSWF), Flood Map for Surface Water (FMfSW), Fluvial Flood Zones and the British Geological Society’s Groundwater Susceptibility Maps were also assessed but the Drain London datasets were the primary data sources.

5.3 Impact of Climate Change

The Evidence

There is clear scientific evidence that global climate change is happening now. It cannot be ignored.

Over the past century around the UK we have seen sea level rise and more of our winter rain falling in intense wet spells. Seasonal rainfall is highly variable. It seems to have decreased in summer and increased in winter, although winter amounts changed little in the last 50 years. Some of the changes might reflect natural variation; however the broad trends are in line with projections from climate models.

Greenhouse gas (GHG) levels in the atmosphere are likely to cause higher winter rainfall in future. Past GHG emissions mean some climate change is inevitable in the next 20-30 years. Lower emissions could reduce the amount of climate change further into the future, but changes are still projected at least as far as the 2080s.

We have enough confidence in large scale climate models to say that we must plan for change. There is more uncertainty at a local scale but model results can still help us plan to adapt. For example we understand rain storms may become more intense, even if we can't be sure about exactly where or when. By the 2080s, the latest UK climate projections (UKCP09) are that there could be around three times as many days in winter with heavy rainfall (defined as more than 25mm in a day). It is plausible that the amount of rain in extreme storms (with a 1 in 5 annual chance, or rarer) could increase locally by 40%.

Key Projections for Thames River Basin District

If emissions follow a medium future scenario, UKCP09 projected changes by the 2050s relative to the recent past are:

- Winter precipitation increases of around 15% (very likely to be between 2 and 32%)
- Precipitation on the wettest day in winter up by around 15% (very unlikely to be more than 31%)
- Relative sea level at Sheerness very likely to be up between 10 and 40cm from 1990 levels (not including extra potential rises from polar ice sheet loss)
- Peak river flows in a typical catchment likely to increase between 8 and 18%

Implications for Flood Risk
Climate changes can affect local flood risk in several ways. Impacts will depend on local conditions and vulnerability.

Wetter winters and more of this rain falling in wet spells may increase river flooding in both rural and heavily urbanised catchments. More intense rainfall causes more surface runoff, increasing localised flooding and erosion. In turn, this may increase pressure on drains, sewers and water quality. Storm intensity in summer could increase even in drier summers, so we need to be prepared for the unexpected.

Rising sea or river levels may increase local flood risk inland or away from major rivers because of interactions with drains, sewers and smaller watercourses.

There is a risk of flooding from groundwater-bearing chalk and limestone aquifers across the district. Recharge may increase in wetter winters, or decrease in drier summers.

Where appropriate, we need local studies to understand climate impacts in detail, including effects from other factors like land use. Sustainable development and drainage will help is to adapt to climate change and manage the risk of damaging floods in future.

Adapting to Change

Past emission means some climate change is inevitable. It is essential we respond by planning ahead. We can prepare by understanding our current and future vulnerability to flooding, developing plans for increased resilience and building the capacity to adapt. Regular review and adherence to these plans is key to achieving long term, sustainable benefits.

Although the broad climate change picture is clear, we have to make local decisions against deeper uncertainty. We will therefore consider a range of measures and retain flexibility to adapt. This approach, embodied within flood risk appraisal guidance, will help to ensure that we do not increase our vulnerability to flooding.

Drawing number 2111-UA002334-BMD-01 illustrates the impact of climate change within the LBB.

5.4 Impact of Future Development

It is possible that long term developments might affect the occurrence and significance of flooding. However current planning policy aims to prevent new development from increasing flood risk.

In England, Planning Policy Statement 25 (PPS25) aims on development and flood risk aims to “ensure that flood risk is taken into account at all stages in the planning process to avoid inappropriate development in areas at risk of flooding, and to direct development away from areas at highest risk. Where new development is, exceptionally, necessary in such areas, policy aims to make it safe without increasing flood risk elsewhere and where possible, reducing flood risk overall.”

Adherence to Government policy ensures that new development does not increase local flood risk. However, in exceptional circumstances the Local Planning Authority may accept that flood risk can be increased contrary to Government policy, usually because of the wider benefits of a new or proposed major development. Any exceptions would not be expected to increase risk levels which are “significant” (in terms of the Governments criteria).
Within the LBB there are 28 regeneration areas outlined in the London Plan (2009), these are listed in the table below along with a summary of flood risk based on three of the datasets listed in section 5.1 of this report.

<table>
<thead>
<tr>
<th>ID</th>
<th>Location</th>
<th>Area (km²)</th>
<th>Flood Risk (FZ2)</th>
<th>Flood Risk (FZ3)</th>
<th>Surface Water Flooding (Drain London)</th>
<th>Increased Potential for Elevated Groundwater</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brent 009C</td>
<td>Barnhill</td>
<td>0.34</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Brent 009D</td>
<td>Barnhill</td>
<td>0.22</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Brent 025A</td>
<td>Dudden Hill</td>
<td>0.23</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Brent 025B</td>
<td>Harlesden</td>
<td>0.14</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Brent 031B</td>
<td>Harlesden</td>
<td>0.16</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Brent 025D</td>
<td>Harlesden</td>
<td>0.14</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Brent 025F</td>
<td>Harlesden</td>
<td>0.11</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Brent 031D</td>
<td>Kensal Green</td>
<td>0.21</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Brent 031E</td>
<td>Kensal Green</td>
<td>0.19</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Brent 034A</td>
<td>Kilburn</td>
<td>0.07</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Brent 028D</td>
<td>Kilburn</td>
<td>0.11</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Brent 034B</td>
<td>Kilburn</td>
<td>0.14</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Brent 034C</td>
<td>Kilburn</td>
<td>0.14</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Brent 034D</td>
<td>Kilburn</td>
<td>0.09</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Brent 027A</td>
<td>Stonebridge</td>
<td>0.2</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Brent 021A</td>
<td>Stonebridge</td>
<td>0.19</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Brent 027B</td>
<td>Stonebridge</td>
<td>0.18</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Brent 027C</td>
<td>Stonebridge</td>
<td>0.08</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Brent 027D</td>
<td>Stonebridge</td>
<td>0.09</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Brent 027E</td>
<td>Stonebridge</td>
<td>2</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Brent 021B</td>
<td>Stonebridge</td>
<td>0.7</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Brent 021C</td>
<td>Stonebridge</td>
<td>0.13</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Brent 021E</td>
<td>Stonebridge</td>
<td>0.17</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Brent 021F</td>
<td>Stonebridge</td>
<td>0.17</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Brent 010E</td>
<td>Welsh Harp</td>
<td>0.21</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Brent 026E</td>
<td>Wembley Central</td>
<td>0.28</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Brent 024B</td>
<td>Willesden Green</td>
<td>0.12</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Brent 024D</td>
<td>Willesden Green</td>
<td>0.6</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
Table 5-2 Regeneration areas in Brent

All of the regeneration areas in the LBB are at risk of shallow surface water flooding. Five of the Stonebridge sites, the Welsh Harp and the Wembley Central sites are at risk from surface water, groundwater and river flooding. This analysis highlights the importance of ensuring that any new development takes flood risk into account to prevent exacerbating the situation. These regeneration areas provide an opportunity to reduce the flood risk within the LBB.

Due to the scale of these developments, their impact on flood risk is potentially significant and will therefore need to be managed strategically (rather than on a site-by-site basis).
6 Review of Indicative Flood Risk

In order to ensure a consistent national approach, DEFRA and WAG have established a series of significance and threshold criteria to define flood risk areas in the UK. Guidance on applying these thresholds has been provided from DEFRAxvi. The Environment Agency used the DEFRA criteria to develop a national dataset which identified Indicative Flood Risk Areas. An Indicative Flood Risk Area was defined in areas where more than 30,000 people are at risk of flooding.

![Figure 6-1 National Indicative Flood Risk Areas](image-url)

The Indicative Flood Risk Area for Greater London incorporates the whole of the LBB.
6.1 Extent of FRA

The Greater London Indicative Flood Risk Area extent is shown in the map below.

![Greater London Indicative Flood Risk Area](image)

Figure 6-2 Greater London Indicative Flood Risk Area

6.2 Review of Comments

Although there are several areas within the borough that have been identified as being at a high level of risk from a variety of sources no further Flood Risk Areas were identified as the threshold criteria was not met. Flood risk in these smaller areas will be managed most effectively at a local scale using Local Flood Risk Management Strategies.

No changes are proposed to the Greater London Indicative Flood Risk area as the area will be managed as a whole rather than on a London Borough basis. There is a Surface Water Management Plan currently underway for the LBB area as part of the Drain London Tier 2 works, where all 33 London Boroughs are undertaking the development of SWMPs. The outputs from both of these studies will be used to support and inform the next stages of the requirements of the FRR and the FWMA.
7 Identification of Flood Risk Areas

7.1 Amendments of FRA

No amendments are required to the Greater London FRA.

7.2 New FRA

None proposed.
8 Next Steps

8.1 Scrutiny and Review

The scrutineering procedures that are to be undertaken during the production of the PFRA outputs are set out by the European Commission to assist in allowing the identification of the level of flood risk across the UK and EU and for the identification of the most significant flood risk areas. The scrutiny process will comprise two steps for this iteration of the PFRA:

Local Authority Review

The first element is for LBB to undertake an internal review of the PFRA, in accordance with LBB’s review procedures, to both ensure the quality and accuracy of the output. In addition, this process will signal, as identified in the FRR, for LBB to deliver further requirements up to 2015. This is associated with being within the Indicative Flood Risk Area of London.

Within LBB, the PFRA will be taken to the LBB Committee for approval before being delivered to the Environment Agency.

Environment Agency Review

Under the FRR, the Environment Agency has been given a role in reviewing, collating and publishing all of the PFRAs once submitted.

The Environment Agency will undertake a technical review (area review and national review) of the PFRA, which will focus on instances where Flood Risk Areas have been amended and ensure the format of these areas meets the provide standard. If satisfied, they will recommend submission to the relevant Regional Flood Defence Committee (RFDC) for endorsement. RFDCs will make effective use of their local expertise and ensure consistency at a regional scale. Once the RFDC has endorsed the PFRA, the relevant Environment Agency Regional Director will sign it off, before all PFRAs are collated, published and submitted to the European Commission.

Future Iterations

To aid the review of the PFRA in six years time the LLFAs within the Greater London Flood Risk Area should form a committee to provide an active forum for discussion. Regular discussions between LLFAs will aid the development of a comprehensive flood risk strategy which is achievable and addresses risk at all levels across London.

LBB should review what is needed to assist future PFRAs based on the key findings of this Preliminary Assessment Report, emerging SWMPs and Local Flood Risk Management Strategies for the borough. The key findings and observations of the LLFAs, the Environment Agency and the National Scrutiny Committees across the UK as part of the 1st cycle of the PFRA process over the next few months will be vital in determining future requirements.

8.2 Data Collection and Management

In order to continue to fulfil their role as LLFA, LBB are required to investigate future flood events and ensure continued collection, assessment and storage of flood risk data and information.
8.2.1 Incident Recording

The Drain London Forum has issued to all Boroughs a standard specification for Flood Incident data reporting, in Excel spreadsheet format. The purpose of this spreadsheet is to provide a template for recording flood incident information in a consistent manner throughout Greater London.

As part of their new responsibilities as Lead Local Flood Authorities, each London Borough is required to monitor flooding within its area and investigate the causes. This Flood Incident Record template aims to provide a key tool in this process by providing a consistent means for recording incident information for future investigation. The fields provided are based upon the Environment Agency standards for flood event data collection, with some minor additions to retain extra related information where it is available.

This spreadsheet can be used as a stand-alone record or can be modified for use on any proprietary GIS platform.

In addition to setting up consistent systems, the Borough will need to define the processes by which a flood incident is reported and investigated.

As such, it is recommended that LBB develop and maintain an incident register, recording future flood records as per the Annex 1 PFRA spreadsheet. This will ensure a consistent level of detail is recorded for each significantly harmful event and will aid the next PFRA in six years time. At the very least for each flood event with significant consequences, provision should be made to record:

- Flood location
- Flood type
- Date of each flood
- Duration of flood
- Estimated adverse consequences on the population, economic damage, cultural heritage and environment.

It is important that all partners in Local Flood Risk Management keep more detailed records of significant future asset flooding incidents. It is critical at this stage that the records of flood events are documented consistently and in accordance with the INSPIRE Directive (2007/2/EC).

It is advised that LBB maintains a centralised database, receiving regular updates from members of the partnership. This data can then be used to help inform future assessments and reviews and for input into the mapping and planning stages of the FRR requirements.

8.2.2 Asset Registers

Additionally, as part of the FWMA, the LBB have a duty to maintain register of structures or features which are considered to have an effect on flood risk, including details on ownership and condition as a minimum. This register must be available for inspection by the Secretary of State. The asset register should contain records of all existing assets within the borough and should be updated as more data becomes available.

Stakeholders and partners should be encouraged to use GIS formats to store their data in order to facilitate exchange and management of data. A data management plan would be valuable in ensuring data sets were kept up to date and consistent across all stakeholders. A future
consideration could be the development of an online GIS asset register database. This would enable a wider range of organisations to contribute information.

Responsibility for the overall management of the data should lie with LBB, as the LLFA, who should coordinate updating the databases either using internal systems or via a web based interface.

8.3 Other FRR Requirements

The Flood Risk Regulations require three main types of assessments, maps and plans to be undertaken by LLFAs and approved by the Environment Agency between 2011 and 2015. These are outlined as follows;

- **Preliminary Flood Risk Assessments** (this document) - Completed by Lead Local Flood Authorities (LLFAs) and agreed by the Environment Agency by the 22nd December 2011. Flood Risk, Hazard Maps and Local Flood Risk Management Plans will be developed on the basis of identified flood risk areas. Under the Flood and Water Management Act, Surface Water Management Plans are required where there is a risk identified.

- **Flood Hazard Maps and Flood Risk Maps** - The Environment Agency and Lead Local Flood Authorities are required to produce Hazard and Risk maps for Sea, Main River and Reservoir flooding as well as ‘other’ relevant sources by 22nd December 2013. Draft maps will be developed as part of the Drain London Programme for all 33 London Boroughs during 2011. Some minor changes/enhancements to these products may be required once formal guidance is published by the Environment Agency.

- **Local Flood Risk Management Plans** - The Environment Agency and Lead Local Flood Authorities are required to produce Local Flood Risk Management Plans for Sea, Main River and Reservoir flooding as well as ‘other’ relevant sources by 22nd December 2015.

As LLFA, LBB must develop a strategy for local flood risk management. The strategy must be consistent with the National Flood and Coastal Erosion Risk Management Strategy for England, and should be developed and maintained with consultation from other stakeholders, such as the public and other risk management authorities.

The strategy must specify:

- the risk management authorities in the authority's area,
- the flood and coastal erosion risk management functions that may be exercised by those authorities in relation to the area,
- the objectives for managing local flood risk (including any objectives included in the authority's flood risk management plan prepared in accordance with the Flood Risk Regulations 2009),
- the measures proposed to achieve those objectives,
- how and when the measures are expected to be implemented,
- the costs and benefits of those measures, and how they are to be paid for,
- the assessment of local flood risk for the purpose of the strategy,
- how and when the strategy is to be reviewed, and
- how the strategy contributes to the achievement of wider environmental objectives.

The Brent Local Flood Risk Management Strategy should involve ongoing and future activities of FRMP (including SWMPs above and improved data collection and management). This will help to better coordinate and manage local flood risk in the borough and will help with the preparation of the 2nd PFRA cycle in six years time.
9 References

i Defra (2010) Floods and Water Management Act 2010

http://www.preventionweb.net/files/2935_250608floodssummary.pdf

viii Brent Core Strategy, July 2010,
http://brent.limehouse.co.uk/portal/planning/cspo/adopted_cs?pointId=1253569

ix Environment Agency, Building Trust with Communities,
http://www.ncl.ac.uk/ihs/research/environment/rehmarc/pdfs/workingwithothers.pdf

xii Jacobs (2007), LBB Strategic Flood Risk Assessment

xiii MWH (2008), North Brent Integrated Urban Drainage Pilot Study, DEFRA

xiv Jacobs/JBA (March 2011), Increased Potential for Elevated Groundwater Technical Note

xv Planning Policy Statement 25,
http://www.communities.gov.uk/planningandbuilding/planning/planningpolicyguidance/planningpolicystatements/planningpolicystatements/pps25/

