Ingress of fine particulate matter in indoor heritage environments
Some experimental and computational approaches

Josep Grau-Bové1, Matija Strlič1, Luca Mazzei2, Liora Malki-Epshtein3, Dave Thickett4

1 Centre for Sustainable Heritage, Bartlett School of Graduate Studies
2 Department of Chemical Engineering
3 Department of Civil, Environmental & Geomatic Engineering
4 English Heritage
University College London
Soiled heritage: the Waterloo Gallery in Apsley House and a statue in UCL, London.
Properties of PM

Particulate matter has distinct properties:

- It has a certain size distribution
- Decay rates are a function of this size distribution
The focus is on fine particulate matter \((PM_{1})\). Generally, in indoor heritage:

- Particles are very diluted (no particle to particle interaction)
- Stokes numbers are \(< 1\) (particles do not affect airflow)
- Velocities are low and the flow is generally turbulent
Model Development

Structure of the Model

- Geometry
- Ventilation flow rates
- Crack infiltration
- Wall temperatures
- Outdoors concentration

Particulate Matter Deposition Rates

Cleaning
Soiling
Damage
Eulerian 'Drift Flux' Model

\[
\frac{\partial C_i}{\partial t} + \nabla \cdot \left[(u + v_{s,i} + v_{th})C_i \right] = \nabla \cdot \left[(D_i + \varepsilon_p)\nabla C_i \right] + S_{C_i} \quad (1)
\]

Lagrangian Model

\[
\frac{\delta V_{pi}}{\delta t} = \frac{V_{fi} - V_{pi}}{\tau} + F_{Gi} + F_{Si} + F_{Therm,i} + F_{Ei} \quad (2)
\]

Indoor emission source models

\[
V \frac{\delta C}{\delta t} = \text{INDOOR SOURCE} + \text{INGRESS} - \text{VENTILATION} \quad (3)
\]
Case Study 1: Wellcome Collection
$PM_{2.5}$ concentration in Euston Road in $\mu g/m^3$ taken from http://www.londonair.org.uk.
Case Study 1: Wellcome Collection

inlet velocity $\sim 1m/s$

$dp = 0.02 \sim 1\mu m$

$\rho_p = 1000 - 5000 kg/m^3$

turbulence model: RNG $k - \epsilon$
Case Study 1: Wellcome Collection
Case Study 1: Wellcome Collection

![Simulation vs Experimental Graph](chart.png)
Deposition rates are directly proportional to the aerosol concentration. In the model, this is reflected by the fact that,

$$J = u_d C_i$$

(4)

and that

$$u_d = f(\epsilon_p, D, \nu, \tau_w)$$

(5)

This assumption is valid between two extremes: concentration has to be high enough to consider the particle field as a continuum, and it has to be small enough to prevent coagulation. This upper limit can be considered to be in the vicinity of \(\sim 5 \times 10^5 \) particles/cm\(^3\), but depends on turbulence and particle size.
Case Study 2: The Wellington Arch
Case Study 2: The Wellington Arch

THE WELLINGTON ARCH (rebuilt 1883)

- Underpass ventilation shaft
- Exhibition/hospitality room
- Viewing platform
- Exhibition/hospitality room

PORTICO
RESEARCHING ENGLISH HERITAGE SITES

0 5 1 0 m
1961
2000
20 1 1–12
1910–12
1825–33
Exhibition/hospitality room
Viewing platform
Viewing platform

1825–33
1910–12
1961
2000
2011–12

0 5 10 m
Case Study 2: The Wellington Arch

3D Doppler anemometer, P-Trak particle counter, CO monitor, RH and T monitor and glass slides to collect deposited particles. Experiment carried out during 4 days.
Case Study 2: The Wellington Arch
Case Study 2: The Wellington Arch

Contours of User Scalar 0 (Time=4.0000e+01)

FLUENT 6.3 (3d, dp, pbns, rngke, unsteady)
Case Study 2: The Wellington Arch

Contours of User Scalar 0 (Time=6.0000e+01)

FLUENT 6.3 (3d, dp, pbns, rngke, unsteady)

Aug 24, 2013
Case Study 2: The Wellington Arch

Contours of User Scalar 0 (Time=1.5000e+03)

FLUENT 6.3 (3d, dp, pbns, rngke, unsteady) Aug 24, 2013
Case Study 2: The Wellington Arch
Case Study 2: The Wellington Arch
d_p in $m\mu$ and deposition rates in $\text{number}/(cm^3\text{day})$.
Case Study 3: Apsley House
Case Study 3: Apsley House
Case Study 3: Apsley House

Large crack (L = 8 cm, H = 2 mm), such as a poorly sealed window frame.

Very small crack (L = 1 cm, H = 0.25 mm), such as a crack in the glass or the glass fitting.
Case Study 3: Apsley House

Contours of particle concentration (max = 150,000 particles/cm³) and Infra Red images (temperatures between 12 and 21 °C)
Case Study 3: Apsley House

Measured velocity between rooms using ultrasonic 3D ultrasonic anemometers.
Simulated airflow between rooms.
Next step: simulation in larger geometries validated with deposited particle counts with SEM.
Concluding remarks

- The model can predict I/O ratios with accuracy using very simple meshes.
- Its applicability is limited in closed rooms with a single inlet.
- This can be addressed with a proper subdivision of the simulated geometry.
- Leakage can be estimated using a combination of experimental and computational tools.
Thanks for your attention.

Contact details
Josep Grau-Bové
josep.grau-bove.11@ucl.ac.uk

Acknowledgements
The authors would like to thank Rebecca Chisholm from English Heritage, Josephine Oxley and all the staff of Apsley House, Stefania Signorello and her colleagues from the Wellcome Collection, and Dejan Mumovic from The Bartlett School of Graduate Studies.
We solve the model proposed by Lai and Nazaroff [K. Lai 2000];

- Particles are treated as an eulerian scalar

\[
\frac{\partial C_i}{\partial t} + \nabla \cdot [(u + v_{s,i} + v_{th}) C_i] = \nabla \cdot [(D_i + \varepsilon_p) \nabla C_i] + S_{C_i}
\]
We solve the model proposed by Lai and Nazaroff [K.Lai2000];

- Particles are treated as an eulerian scalar

\[
\frac{\partial C_i}{\partial t} + \nabla \cdot [(u + v_{s,i} + v_{th})C_i] = \nabla \cdot [(D_i + \varepsilon_p)\nabla C_i] + S_{C_i}
\]

- Deposition is introduced as a boundary condition in the walls

\[
J(x) = -\left(\varepsilon_p + D\right)\frac{\partial C}{\partial y} = u_{s}C(x) + u_{th}C(x)
\]

- The deposition velocity is calculated as

\[
v_{d} = \frac{i v_{s,i} - \exp(-iv_{s,i}I)}{I}
\]

where \(I\) is a function of the Schmidt number (\(Sc = \nu/D\)).
We solve the model proposed by Lai and Nazaroff [K.Lai2000];

- Particles are treated as an eulerian scalar

\[
\frac{\partial C_i}{\partial t} + \nabla \cdot \left[(u + v_{s,i} + v_{th}) C_i \right] = \nabla \cdot [(D_i + \varepsilon_p) \nabla C_i] + S_{C_i}
\]

- Deposition is introduced as a boundary condition in the walls

\[
J = -(\varepsilon_p + D) \frac{\partial C}{\partial y} \pm u_s C + u_{th} C
\]
We solve the model proposed by Lai and Nazaroff [K. Lai 2000];

- Particles are treated as an eulerian scalar

\[
\frac{\partial C_i}{\partial t} + \nabla \cdot \left[(u + v_{s,i} + v_{th})C_i \right] = \nabla \cdot \left[(D_i + \varepsilon_p) \nabla C_i \right] + S_{C_i}
\]

- Deposition is introduced as a boundary condition in the walls

\[
J = - (\varepsilon_p + D) \frac{\partial C}{\partial y} \pm u_s C + u_{th} C
\]

which is defined as \(J_{(y=0)} = \nu_d C_\infty \). The deposition velocity is calculated as

\[
\nu_d = \frac{i v_s}{1 - \exp \left(-i \frac{v_s l}{u^*} \right)}
\]

where \(l \) is a function of the Schmidt number (\(Sc = \nu / D \)).
\[y^+ = \frac{yu^*}{\nu} \quad (6) \]

\[u^* = \frac{\sqrt{\tau_w}}{\rho} \quad (7) \]

wall_shear_force = F_STORAGE_R_N3V(face,facesuperthread)

wall_shear_stress = wall_shear_force / NV_MAG(A);