Wind-driven ventilation of buildings: models and wind tunnel tests

Paul Linden¹,², Nicholas Daish², Guilherme Carrilho da Graca³ & David Banks⁴

1. DAMTP, University of Cambridge
2. MAE, UC San Diego
3. Dept Engineering, University of Lisbon
4. CCP Wind, Colorado
Natural Ventilation for Energy Savings in California Commercial Buildings

- Funded by the California Energy Commission
- Organisations
 - UC San Diego
 - UC Berkeley
 - Lawrence Berkeley National Laboratory
 - Arup (San Francisco)
 - CPP Wind
- 3 Projects
 ① Potential benefits and risks
 ② Barriers to implementation
 ③ Tool development
- Implementation of wind-driven models in EnergyPlus
Typical buildings
Cross-Ventilation (CV)

Single Sided (SS)

12 meters

6 meters

6 meters
Single-sided model

- Ventilation rate due to 1 or more openings in same façade
- Dependence on wind angle and opening size and position
- Pursue empirical approach based on flow conditions near openings
CPP tests: model building

Pressure sensors around aperture positions

FID (concentration) sensors

2-story: approx 5:2:1, H = 10cm
Experimental set-up

Set-up

- Building: 2-story or 4-story
- Environment: isolated or blocks (low/high; close or wide spacing)
- Room on Floor 2 with 1 or 2 apertures open
- 2 aperture arrangements \(\times 3 \) building/environments

Types of run

- “Closed box” runs
 - Pressure, velocity
 - \(\Delta \phi = 0^\circ, 11.25^\circ, \ldots, 180^\circ \)
 - All building/environment combinations
- Ventilation runs
 - Concentration decay
 - \(\Delta \phi = 0^\circ, 22.5^\circ, \ldots, 180^\circ \)
 - Some building/environment combinations
- Flow visualization runs
Flow rate and pressure difference related

Flow rate

Pressure difference

Non-dimensional flow rate

Pressure difference (in H2O)

Wind angle (deg from North)

S1:S8

S3:S6

Wide, symm

Narrow, symm
Pumping through openings in the lee
Correlation model for flow Q

\[
\frac{Q}{A_{in}U_{ref}} = \left\{ a_p |\Delta c_p| + a_\sigma \sigma_{\Delta c_p} \right\}^{1/2} + a_s \left(\frac{U_L}{U_{ref}} \right)
\]

- Mean pressure difference term
- \(a_p \) is constant
- Pressure fluctuation term
- \(a_\sigma \) is constant
- Shear term
- \(a_s \) is constant
- is local velocity
Optimal fit using pressure data

Parameter values at optimum:

\[a_p = 0.2, \sigma_a = 0.1, \sigma_s = 0 \]
Incorporation in EnergyPlus

\[
\frac{Q}{A_{in}U_{ref}} = \left[a_p |\Delta c_p| + a_\sigma \sigma_{\Delta c_p} \right]^{1/2}
\]

- Model depends on parameters \(\Delta c_p \) and \(\sigma_{\Delta c_p} \)
- E+ currently has *average* \(c_p \) for façade, \(\overline{c_p} \)
 \(\Rightarrow \) Need additional modeling to obtain \(\Delta c_p \) and \(\sigma_{\Delta c_p} \)
- As a minimum require
 - Basic variation of \(c_p \) over façade
 - Dependence of \(c_p \) on wind angle \(\phi \) (already available in E+)
 - Approximation for \(\sigma_{\Delta c_p} \) as function of \(\phi \)
Pressure data analysis

• Pressure sensors, e.g. 2-story building

• Focused on South façade

• Analyzed $\Delta p_{ij}(t) = p_i(t) - p_j(t)$ for different i, j for each wind angle ϕ

 $\rightarrow \Delta c_p(s/W_B, \phi)$ and $\sigma_{\Delta c_p}(s/W_B, \phi)$
Digression: time resolution

Full resolution $\Delta t = 0.001s$

Coarsen data by averaging over consecutive ranges $n\Delta t$

$n=1$

$n=10$

$n=50$
S3:S6: Δc_p power spectrum (90°-180°)

- Bigger low frequency peaks beyond 135° as for Δc_p(S1:S8)
- No significant peaks at $f_{Strouhal}$ (?)

Power Scale as for S1:S8
Relation to standard deviation

- Cumulative power ($\sum P_k$) related to standard deviation ($\sigma \propto \sum P_k$)
- Graph shows 80% of power for $\phi=180^\circ$ by ~ 30Hz, while only 40% for 0°
Optimal fit for Q

Mean error = 25%

Prediction

Experiment

Correlation

$R^2 = 0.52$
Single-sided 1-aperture

\[Q = a_s A_{in} U_L \]

- Flow calculation available in EnergyPlus but
 - Lacking advice on choosing local velocity \(U_L \)
 - Not part of airflow network calculation
- Add capability to estimate \(U_L \)
Local velocity U_L: experimental evidence

Warren & Parkins (1985)

- Use combination of data, CFD and simple modeling (Bernoulli) to relate U_L to wind angle and pressure differences over building
Single-sided, many openings

- When more than 2 openings, group together
- In group add areas, use same c_p
- Needs algorithm in EnergyPlus to handle aggregation
Corner ventilation: wind tunnel

- Corner office with 2 openings on adjacent walls
- Wind angles 0°, ..., 337.5°
- Expect mixture of CV and SS
Corner ventilation modeling

- Blend of CV and SS2 → model as 2 regimes
- Use data and CFD to establish applicability of CV and SS models

Corner office flow rates Q'

Wind angle (deg from North)

Non-dimensional flow rate

“SS” “CV” “SS”

S6:E2 S6:E4 SS
Conclusions

• Developed new correlations for single-sided and corner ventilation
• Single-sided, 2 apertures
 – Flow dependent on mean pressure difference
 – Pumping flow dependent on unsteady pressure differences
• Single-sided, 1 aperture
 – Local velocity important in determining flow rates
 – Angle dependent
• Corner ventilation
 – Combination of cross ventilation and single-sided depending on wind direction
• EnergyPlus implementation
 – Cross ventilation, single-sided and corner ventilation to be in next release (December 2013)