Grounds maintenance

Long-grass management on MOD (RAF) aerodromes

The contents of this Bulletin are Mandatory for MOD (RAF) Aerodromes.

MANDATORY

SUBJECT CONTACT POINTS:
Airfields and Bulk Fuels Group (ABFG)
Sutton Coldfield Mil extn 3623

Military Air Traffic Organisation (MATO)
Ops (T)3
RAF Uxbridge extn 6173

DEFENCE ESTATE ORGANISATION
MINISTRY OF DEFENCE

May 1997
If missing copies are required, please contact your TLBH distribution point.

<table>
<thead>
<tr>
<th>Serial No</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>97/01</td>
<td>Authorising Engineers - appointment procedures</td>
</tr>
<tr>
<td>97/02</td>
<td>Health and Safety - Audit & Monitoring of MOD Safety Rules and Procedures</td>
</tr>
<tr>
<td>97/03</td>
<td>Implementation of new MOD Safety Rules and Procedures</td>
</tr>
<tr>
<td>97/04</td>
<td>Work equipment regulations</td>
</tr>
<tr>
<td>97/05</td>
<td>Requirements for the professional inspection of fuel facilities and flammable dangerous goods stores</td>
</tr>
<tr>
<td>97/06</td>
<td>The assessment of underground tanks</td>
</tr>
<tr>
<td>97/07</td>
<td>Standard report for the inspection of fuel facilities and flammable dangerous goods stores</td>
</tr>
<tr>
<td>97/08</td>
<td>Issue of MOD Electricity Safety Rules and Procedures - SRP 01</td>
</tr>
<tr>
<td>97/09</td>
<td>Buried steel fuel pipelines: coating condition and cathodic monitoring</td>
</tr>
<tr>
<td>97/10</td>
<td>Withdrawn - please destroy</td>
</tr>
<tr>
<td>97/11</td>
<td>Ventilation, flues and installation of heating appliances</td>
</tr>
<tr>
<td>97/12</td>
<td>Accommodation Scales and Reference Costs - Reviews</td>
</tr>
<tr>
<td>97/13</td>
<td>Updating Cost Estimates using Tender Price Indices</td>
</tr>
<tr>
<td>97/14</td>
<td>Fuse Pillars - Specification 039</td>
</tr>
<tr>
<td>97/15</td>
<td>Junior Ranks' Single Living Accommodation (JRSA) - DMG 04</td>
</tr>
<tr>
<td>97/16</td>
<td>Policy and practice on the use of hydrofluorocarbons (HFCs) as refrigerants in works air conditioning and refrigeration</td>
</tr>
<tr>
<td>97/17</td>
<td>Environmental Protection - the Montreal Protocol on substances that deplete the ozone layer - Amended EC Reg 3093/94</td>
</tr>
<tr>
<td>97/18</td>
<td>The role of DEO(TSD) Technical Authorities and Authorising Authorities</td>
</tr>
<tr>
<td>97/19</td>
<td>Water supply - reducing consumption, losses and costs</td>
</tr>
<tr>
<td>97/20</td>
<td>Safety Rules and Procedures 01 - Electricity - Issue of Correction Slip</td>
</tr>
<tr>
<td>97/21</td>
<td>Uninterruptible power supply requirements for closed circuit television security systems</td>
</tr>
<tr>
<td>97/22</td>
<td>Installation of alarms for automatically controlled steam and hot water boilers</td>
</tr>
<tr>
<td>97/23</td>
<td>Health & Safety - Polychlorinated biphenyls (PCBs) and related compounds</td>
</tr>
<tr>
<td>97/24</td>
<td>Property Management of the Rural Estate</td>
</tr>
<tr>
<td>97/25</td>
<td>List of Health & Safety Warning Notices issued by DWS/DEO(W) from 1993 to 1996</td>
</tr>
<tr>
<td>97/26</td>
<td>Not yet issued</td>
</tr>
<tr>
<td>97/27</td>
<td>Not yet issued</td>
</tr>
<tr>
<td>97/28</td>
<td>Not yet issued</td>
</tr>
<tr>
<td>97/29</td>
<td>Not yet issued</td>
</tr>
<tr>
<td>97/30</td>
<td>Not yet issued</td>
</tr>
<tr>
<td>97/31</td>
<td>Asbestos based materials</td>
</tr>
<tr>
<td>97/32</td>
<td>Issue of MOD Safety Rules and Procedures 02 - Boilers and Pressure Systems</td>
</tr>
<tr>
<td>97/33</td>
<td>Safety Rules and Procedures 02 - Boilers and Pressure Systems - Issue of Correction Slip</td>
</tr>
<tr>
<td>97/34</td>
<td>Grounds maintenance - Long-grass management on MOD (RAF) aerodromes</td>
</tr>
</tbody>
</table>
INTRODUCTION

1. This Technical Bulletin provides direction for Property Managers (PROM), Senior Air Traffic Control Officers (SATCO), Establishment Works Consultants (EWC) and Works Service Managers (WSM) with regard to the establishment and maintenance of long-grass on MOD Aerodromes. This is a mandatory requirement for RAF Aerodromes and advisory for other services and visiting forces. This requirement is mentioned in the Grounds Maintenance Technical Bulletin. This TB will, however take precedence over any other detail.

The Birdstrike Problem

2. Damage to aircraft through collision with birds is a serious problem. Jets are particularly vulnerable, but all fast moving aircraft can be damaged even by relatively small birds.

2. Bird strikes can occur at any stage of a flight, the majority happen below 300m (1000 ft) where bird activity is greatest.

3. Aircraft are most vulnerable during take off and landing. It is, therefore, vital to reduce the hazard by keeping the numbers of birds on an aerodrome to the minimum.

4. The single most effective means of reducing the hazard is by maintaining the grass at a height of between 150 mm and 200 mm.

5. Long-grass makes the aerodrome unattractive to those birds that are a particular hazard to aircraft, especially gulls and lapwings. It does this by denying birds the all-round-vision which they need for warning of approaching danger and by making it difficult for the birds to forage for food.

6. Long-grass does not drive birds on to hard areas of the aerodrome. Bird counts over many years show populations on hard areas to be very small.

7. Long-grass policy (LGP) is part of an integrated bird and pest management strategy practised by the RAF. The key to reducing bird strikes is to maintain close cooperation between the PROM, SATCO and the users of the aerodrome. (Liaison with neighbouring land owners and/or the local authority may also be necessary).
LONG-GRASS POLICY

8. It is MOD policy that all aerodromes, having paved runways, that are actively used by the RAF in the UK and Germany, other than those solely operating helicopters or gliders, are to adopt long grass management.

9. Short, gang-mown grass is the greatest long term attraction on an aerodrome for birds and the adoption of a long-grass regime is considered to be the single most effective aerodrome bird deterrent. It spoils the habitat for birds by restricting their vision at ground level, thus reducing their security, and also by considerably restricting their access to any food sources which might be available in the soil. The term 'long-grass' however, is a misnomer and can lead to some misunderstanding of this habitat control technique. The main difference between short grass management on aerodromes and the long grass technique lies in the cutting regime. Long-grass is maintained at a height of between 150mm and 200mm either permanently or for specified periods throughout the year, depending on the regime (see para 14) adopted as being the most suitable at a particular location.

10. To be properly effective, LGP must apply to as much of the aerodrome as is practicable and especially to those areas adjacent to aircraft operating surfaces. The result is that any attraction to birds is minimised and fewer birds frequent the immediate area. Moreover, those birds which are present are more easily dispersed by active-scaring measures. Consequently, routine scaring techniques retain their effectiveness and are required less frequently.

EXEMPTIONS

11. There are only two areas of aerodrome grass land which are exempt from LGP.

 a. **ILS Glidepath Area:** No vegetation exceeding 100mm in height is permitted within an area specified in AP 100B-03 in front of the ILS glidepath antenna. Grass is to be kept between 50mm and 100mm in height.

 b. **Aerodrome Visual Aids:** Grass in the immediate vicinity of installed aerodrome lights and signs is to be cut to ensure adequate visibility of the individual light or sign. Areas cut short for this purpose are to be the minimum commensurate with the aim.

12. Particular circumstances at certain stations may justify additional exemptions from the policy. In such cases the Station Commander is to obtain express authority for the exemption from HQ MATO (Wg Cdr Ops (T)).

IMPLEMENTATION

13. The PROM, in conjunction with SATCO and the EWC, is to produce drawings defining areas on the aerodrome which are to be kept as long and short grass. (see paragraph 11). These drawings are to be held and updated by the EWC; SATCO is to retain a hard copy which is to be available for inspection by the Central Bird Control Coordinating Officer.
14. There are three recommended options for maintenance of long grass on an airfield:

a. Regime 1 Standard long grass management

b. Regime 2 Long grass management involving commercial cropping (Hay/Silage)

c. Regime 3 The basic system which can only be used with the express authority of MATO Ops (T)3.

For flight safety Regime 1 is the preferred solution.

The above regimes are detailed in Annex A to this Technical Bulletin.

15. Each station is to select one of these regimes for application on their airfield.

16. All regimes are aimed at producing a healthy, erect, dense sward that is free from broadleaved weeds. The grass is to be maintained at a height of between 150 mm and 200 mm and be capable of standing upright during the winter months. Good stands of grass may be obtained by simply allowing an existing sward to grow, but in some areas re-seeding may be necessary due to climatic, soil or existing sward condition. It may be necessary to experiment with different grass seed mixtures and techniques to find the most effective and economic mixture for a particular aerodrome. The EWC will provide the advice on how this is to be achieved.

17. Soil samples should be taken bi-annually for phosphate and potash levels. The first samples, analysis and report should occur between late February and early April, the analysis is to be carried out by a NAMAS-accredited laboratory. The results should be interpreted and a report containing appropriate recommendations provided, to include a fertiliser management programme, the timings and application rates of all fertiliser and lime required.

18. The populations of soil organisms detrimental to grass growth or attractive to birds as food, are to be assessed as part of the soil fertility analysis detailed above. The report should include recommendations on treatment of the sward that may be necessary to control particular problems and, when dealing with the control of organisms which are potential food items for birds, measures for avoiding secondary poisoning.

MANAGEMENT CONSTRAINTS

19. Some aerodromes may contain Sites of Special Scientific Interest (SSSI) or other Nature Conservation Designation areas which may influence the grass regime adopted, however, Flight Safety is the overriding criteria in these situations (JSP 362 Ch 5 refers).

20. The Environment Agency may impose restrictions on the use of certain fertilisers, herbicides and pesticides due to the potential pollution of water courses or catchments. In this situation advice can be sought from the Agricultural Development Advisory Service (ADAS) on alternative courses of action.

21. When making arrangements for the policy to be introduced, account must be taken of restrictions in the use of chemicals and other regulations that apply to grounds maintenance work.

May 1997
22. Further information and terminology for habitat management is contained in Annex B to this Technical Bulletin.

REGIONAL VARIATIONS

23. Climatic differences will require minor adjustments to timing of the grass management programme (i.e. active grass management may commence several weeks sooner in Cornwall than it will in Scotland).

Bulletin Authorised By:

C T CAIN
Director
Defence Estate Organisation
(Technical Standards)
Annex A
Grounds maintenance
Long-grass management on MOD (RAF) aerodromes

REGIME 1
Standard Long-Grass Management

1. The main difference between normal aerodrome grass maintenance and the long grass technique lies in the cutting regime, which is described in the following paragraphs and illustrated in Figure 1. It should be noted that for long grass a rotary cutter (not less than 3 metres wide), is required which is capable of being set to cut at a height of 150 and 200mm and that once a year, a flail-type forage harvester is needed. The cutting and clearing of existing long-grass ('bottoming-out') should commence in early spring or as soon as the ground has drained sufficiently following winter, to support the heavy machinery involved without unduly compacting or rutting the surface. Flail type forage harvesters should be used to cut as low as possible to take up both the old grass growth and thatch without damaging the crowns of the grass plants. Round Baling may be preferred by some contractors as a means of grass collection. However, experience has shown that the relatively short length of the grass does not lend itself to this form of collection, large quantities are frequently left ungathered and associated FOD hazard can result. Forage harvesting remains the recommended method for grass collection on aerodromes.

![Figure 1: Standard Long Grass Management]

Key:
- B.O.: bottoming out
- F.: flowering
- T.C.: topping cut

Note: that short dippings from topping cuts reduces the risk of a fire spreading.

May 1997
2. Immediately following bottoming out, the ground should be scarified with spiked harrows. If the thatch has been heavy it may be necessary to rake and clear again after harrowing. A large quantity of thatch left in situ will result not only in a slower recovery and a much weaker sward but also encourage weed infestation later in the year. Decomposing thatch also acts as a food source for many invertebrate species which, in turn, attract birds to the aerodrome. These operations should be followed by rolling and dressing with an appropriate application of fertiliser. The date of completion of this preparation should be such as to permit the regrowth to reach a minimum of 150mm by the second week in May when young rooks leave the nest. Moreover, it is important that the grasses be permitted to develop normally and produce flower in this month. Delayed flowering could result in fewer and smaller flowers and hence less woody stubble to support the grass leaf the following winter. The strong and healthy growth of the sward in the following season is dependent upon the efficiency with which these final operations are carried out.

3. The first 150 mm topping cut should be taken at the end of May when the majority of the grasses have produced flowering heads. A rotary cutter set at 150mm should be used to trim the grass and the trimmings allowed to filter down through the standing stubble. Subsequent cutting operations at 150mm should take place when the grass has reached a height of 200mm, the clippings again being allowed to filter through the standing stubble. Allowing the grass to exceed 200mm results in the clippings being of such weight and bulk as to depress the stubble, thereby damaging the sward. In a normal growing season it is necessary to cut on approximately 4 occasions; however, if there is any doubt it is preferable to have one cutting operation too many rather than one too few. Weed infestation will tend to reduce the efficiency of the scheme, either by causing the grass to lie flat during the winter or by encouraging wood pigeons and small birds to feed on the seed and leaves. It is necessary to control weed growth with suitable selective herbicides.

4. The condition of aerodromes situated on impervious or nearly impervious soils which suffer from restricted drainage will be aggravated by long-grass. All existing land drains should be checked and supplementary drainage laid where necessary, bearing in mind that forage harvesters and loaded trailers require a much stronger bearing surface than gang mowers. There is no objection to mole drainage where soil conditions are suitable, but PROMs should check the location of underground services before proceeding.

5. A summary of the operations and timings for the standard long grass management regime is shown in Appendix A.

REGIME 2

Long-Grass Management Involving Commercial Cropping (Hay/Silage)

6. In an attempt to reduce the cost of aerodrome grass maintenance at some stations the letting of a contract for an annual hay or silage crop forms an integral part of the LGP. This policy is only suitable however at those inland units where LGP is not required as a year round bird deterrent. The system attracts revenue which can offset a proportion of the overall cost of aerodrome grass maintenance. The contract, or licence, for a crop option, will require careful liaison between aerodrome management and the contractor to ensure that the interest of neither suffers. The contractor shall be made responsible both for applying fertiliser and for managing the aerodrome grass so as to obtain the best sward. The final harvest must be taken in time to enable the grass to grow to a minimum height of 200mm before the end of the growing season, thus providing a stand of long grass through the autumn
and winter, albeit without the support of the more rigid flowering stems. The contractor should apply slow release fertiliser in the autumn to maintain the stand during the winter months. The following spring the contractor should cut the grass short, remove the arisings, apply fertiliser and begin the cycle again (see Figure 2). Such a scheme may not produce perfect long grass but it provides a bird deterrent at minimal cost at the time of the year when it is most needed, i.e. June to March inclusive.

Figure 2: Long Grass Management

![Diagram](image)

Involving Commercial Cropping

REGIME 3

The Basic System

7. Where, because of the geographical location of an aerodrome, there is no local demand for hay or silage nor a requirement for year round LGP, an alternative grass management technique, 'the basic system' should be applied. This simple method incorporates the use of 'gang' mowers during the growing season whereby the grass is cut 3 or 4 times with mowers set at a height of 40mm. Cutting ceases around May/June, leaving ample time for grass growth before the end of the growing season. Close to the end of the growing season the grass is 'topped' to a height of 150mm and then left to stand for the winter. This alternative system of management is economical, simple to implement and practical to sustain; nevertheless, although cost is important, the over-riding factor when determining the most suitable LGP for a particular aerodrome must be flight safety.

RESTORATION OF LONG-GRASSED AREAS

Overseeding

8. Existing grasses on some airfields may not be suitable for successful long grass. Experience has shown that re-seeding with a mixture of perennial ryegrasses can give good results. These should be of an upright growing
The mixture should also contain a strong creeping red fescue cultivar, a vigorous chewings fescue and a small amount of browntop bent.

9. The percentage make up of the mixture will vary with site location but the following is a general guide:

- 25% perennial ryegrass 'Melle'
- 25% perennial ryegrass 'Preference'
- 25% strong creeping red fescue cultivar
- 20% Chewing's fescue cultivar
- 5% Browntop bent 'Highland'

10. However, specific mixes should be formulated to meet the requirements of each airfield. Overseeding of an airfield should be carried out a section at a time over a period of several years, to avoid disruption to operational use.
Appendix A
Standard long-grass management on MOD (RAF) Airfields

SUMMARY OF OPERATIONS

<table>
<thead>
<tr>
<th>PERIOD</th>
<th>OPERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Late winter, early spring</td>
<td>Implement "bottoming out" operation.</td>
</tr>
<tr>
<td>2. Early spring</td>
<td>Take soil samples for analysis and receive recommended fertiliser</td>
</tr>
<tr>
<td></td>
<td>management programme.</td>
</tr>
<tr>
<td>3. Early spring</td>
<td>Following bottoming out, scarify areas using spiked harrows. Collect,</td>
</tr>
<tr>
<td></td>
<td>remove and dispose of arisings to an approved tip.</td>
</tr>
<tr>
<td>4. Early spring</td>
<td>Following scarification apply fertiliser in accordance with the prescribed</td>
</tr>
<tr>
<td></td>
<td>formula derived from analysis.</td>
</tr>
<tr>
<td>5. Mid to end of May (When grass growth reaches 200 mm)</td>
<td>Cut grass using tractor drawn multiple rotary mower and reduce grass to 150 mm in height. Arisings remain on the ground.</td>
</tr>
<tr>
<td>6. Throughout the growing season</td>
<td>Whenever grass height reaches 200 mm cut grass as per Item 5 above.</td>
</tr>
<tr>
<td>7. Autumn</td>
<td>Apply fertiliser (if necessary) in accordance with the recommendations.</td>
</tr>
</tbody>
</table>

NOTES

(i) To maintain the ideal sward, cutting will be necessary on 4 to 5 occasions during the growing season subject to weed population.

(ii) When approved, selective weed control should be carried out during May when suitable regrowth occurs after a cutting operation.

(iii) The summary of operations does not include commercial cropping arrangements.
Annex B - Habitat management on aerodromes

1. Birds found on and in the immediate vicinity of aerodromes are generally present because the prevailing conditions favour their needs. The more favourable and diverse the conditions, the greater will be both the number and the variety of birds present and vice versa. The principles underlying habitat management as a bird control technique therefore, are as follows:

 a. Identify and remove wherever possible, all those features of the aerodrome and its surrounds which attract birds. The objective should be to maintain the entire aerodrome as a uniform habitat as unattractive to birds as possible.

 b. Avoid the creation of new bird attractions.

2. These remedies will permanently reduce bird numbers in the immediate vicinity of an aerodrome and they offer a long-term alleviation of the bird hazard. First priority must be given to removing those bird attractants on the aerodrome and in the approach and departure areas. Nevertheless, in view of the great mobility of birds and the common practice of some species to commute daily, perhaps 20 miles, from their roosting areas to their feeding grounds, those topographical attractions to birds which are some distance from the aerodrome should not be overlooked. Each location will have circumstances peculiar to it and these need careful assessment before an appropriate habitat management programme is devised.

HABITAT CONTROL MEASURES

3. Once the species of birds which frequent a particular aerodrome have been identified, bird control personnel must familiarise themselves with the seasonal and daily habits of these birds, particularly those which pertain to the aerodrome environment. Subsequently, the following courses of action should be taken:

 a. Control the disposal of kitchen and domestic refuse, and the casual disposal of litter in unit car parks and open skips. These occurrences provide either a food source for birds or create a situation warranting investigation by birds.

 b. Drain unwanted natural water areas, particularly those liable to flooding, which are frequented by gulls, waders or water-fowl. To deter birds from the surface of essential waters, eg. ornamental or recreational ponds, emergency water supply tanks, balancing reservoirs and oil-separators, consider suspending wires or nets to deny access to birds.

 c. Clear vegetation, including edible berry producing shrubs, clovers, trefoils and broad leaved weeds which provide food, shelter or nesting
facilities for birds.

d. Render buildings untenable as nesting or roosting sites by proofing them with wire netting or other suitable material. If such bird activity is allowed to develop unchecked, future clearance may prove difficult and stronger measures such as shooting may become necessary.

e. Maintain a close liaison with Local Authorities to eliminate or render inaccessible to birds, those refuse disposal and landfill sites, adjacent to the aerodrome, which contain edible matter. Adverse developments should be reported, without delay to HQ MATO (Ops (T) 3).

AGRICULTURAL PRACTICES

4. Sludge Spraying. Where hay or silage contracts are included in the grass management programme and grass cuttings removed, the soil becomes impoverished and there is a need to apply either fertilizer or less expensive sewage sludge to sustain the quality of the soil. Sludge has little, if any, nutritional value for birds; however, because of its high water content, its application tends to flood invertibrates out of the soil and these can attract large numbers of gulls. The spraying of sludge on aerodrome grass areas is therefore not recommended.

5. Agricultural Crop Growing. Sometimes, in order to attract additional revenue, units lease areas of the aerodrome for growing cereal or root crops. These crops, in themselves, are not particularly attractive to birds, however post-harvest stubbles and all ground preparations are. Gulls are attracted to any activity such as the lifting of root crops, ploughing or harrowing, and favour cereal stubbles, moreover, having fed behind a plough gulls may rest in the vicinity, and perhaps on a runway, for many hours. Lapwings tend to both feed and roost on ploughed land, whilst wood pigeons and corvine feed on cereal stubbles; the latter forage on ploughed land and take newly sown and germinating grain. Consequently, the growing of agricultural crops on an aerodrome increases its attractiveness to birds and thus the revenue gained can be more than offset by the resulting increased expenditure and effort required on bird control. This practice is therefore not recommended.

6. Livestock. Livestock kept on or near an aerodrome can encourage bird activity. Open air livestock units using complete diet systems, especially those out-of-doors, may attract flocks of starlings, gulls, corvine and pigeons; moreover, starlings, rooks and jackdaws in lesser numbers, are attracted to the food available at indoor pig and poultry farms and in slurry yards. Collared doves and house sparrows thrive whenever grain is accessible, and although the latter may not constitute a serious hazard to flight safety, can be troublesome when they find potential nest sites in adjacent hangars, parked aircraft or line buildings. Grazing animals whether cattle, sheep or horses, crop grass short thereby maintaining a suitable feeding habitat for gulls, lapwings, golden plovers, starlings and corvine. Animal droppings also provide habitat for insect larvae which are sought by birds. The keeping of livestock on an aerodrome is therefore to be discouraged.

7. Fertility Levels. Long grass requires more sustenance than a conventional short grass system and soil fertility levels must be maintained if the quality of the grass is not to deteriorate. Accordingly, both phosphate and potash fertilizers should be applied to maintain a soil index level of between 1 and 2. Following Bottoming Out, a nitrogen based, slow releasing fertilizer may be applied which will encourage regrowth over an extended period.
8. **Weed Control.** Weeds affect the density of grass, and provide food for some birds. Selective weed killing must therefore be part of the long grass management programme. Advice on chemical selection should be sought from an agronomist. The choice of chemicals will be determined by the particular species of weeds present on the aerodrome, also the Environment Agency may prohibit the use of certain chemicals to avoid pollution of water courses or aquifers.

9. **Pest Control.** Pests that directly affect successful long grass management include rabbits, moles and field voles. A well organised pest control programme is to be implemented as part of the grassland management plan.

10. **Land Drainage.** Poor land drainage will prevent effective management of long grass areas because soft, wet soil will not bear the weight of maintenance machines, and cutting will give an uneven height of grass. Wet areas will also encourage plant species which are not desirable in a long grass policy. The following practices are to be incorporated in the aerodrome maintenance plan:

 a. Land drains are to be routinely inspected and defective runs, causing local wet spots, repaired. Outfalls and culverts are to be clean and unobstructed, and ditches and watercourses free flowing.

 b. Surface compaction as a result of vehicle movements should be corrected by the use of a heavy duty aerator after 'Bottoming Out'.

 c. Natural pools which attract gulls and waders should, where practicable, be drained and filled in.