ACDS (Log Ops)

Guide to Using the Logistic Coherence Information Architecture (LCIA)

Version: 1.0
Dated: 8 Nov 2007

Document Owner: – ACDS (Log Ops)
Prepared by: - Paul Killner, LCIA Development
Harry Duncan, LCIA Information Architect

Crown Copyright 2007 ©

UNCLASSIFIED
Administration page

<table>
<thead>
<tr>
<th>Issue</th>
<th>Date</th>
<th>Detail of Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draft 0.1</td>
<td>16 May 07</td>
<td>First Draft Issue: New document to provide guidance on the concept of the use of the LCIA as a framework for developing a support solution. This version is an unapproved draft provided for initial guidance only.</td>
</tr>
<tr>
<td>Draft 0.2</td>
<td>01 Aug 07</td>
<td>Second Draft Issue. Reworking of the original document to include a LCIA concept of employment and concept of operations.</td>
</tr>
<tr>
<td>Draft 0.3</td>
<td>20 Aug 07</td>
<td>Third Draft Issue. Review of CONOPS & CONUSE sections.</td>
</tr>
<tr>
<td>Draft 0.4</td>
<td>12 Oct 07</td>
<td>Fourth Draft Issue. JDT Comments added.</td>
</tr>
<tr>
<td>Version 1.0</td>
<td>08 Nov 07</td>
<td>Issued following final editing.</td>
</tr>
</tbody>
</table>
List of contents

1 Introduction 5
 1.1 Background 5
 1.2 Aims 6
 1.2.1 Part 1 – LCIA Overview 6
 1.2.2 Part 2 – Stakeholder Engagement 6
 1.2.3 Part 3 – Applying the LCIA tool 6
 1.3 1.3 Scope and Guidance 6

2 Part 1 – LCIA Overview 7
 2.1 Introduction 7
 2.2 Support Solution Description 8
 2.3 Support Solution Envelope Assurance & TLIMP 9
 2.4 MOD/Industry Logistic Information Plans 9

3 Part 2 – Stakeholder Engagement 10
 3.1 Project Engagement 10
 3.1.1 Identify Project - Assessment 10
 3.1.2 Brief and Engage – Key Stakeholders 10
 3.1.3 Capture and Collate – Logistic Information 11
 3.1.4 Model – Map to the LCIA 11
 3.1.5 Maintain Definitions – Keep up to Date 11
 3.1.6 Assurance - Results 11
 3.2 Describing Your Support Solution Using the LCIA 12
 3.2.1 Introduction 12
 3.2.2 Solution Development Environment 12
 3.2.3 Reasoning Steps 12
 3.2.4 Step 1 - Decide CLS Contract Type 13
 3.2.5 Step 2 - Decide High Level Logistic Support Functions 13
 3.2.6 Step 3 - Define the Logistic Operation Organisations 13
 3.2.7 Step 4 – Assign LCIA High Level Support Functions to Organisations 14
 3.2.8 Step 5 - Assign Detailed Logistic Functions to Organisations 15
 3.2.9 Step 6 – Define MOD/Industry Information Exchanges 15
 3.2.10 Step 7 - Determine Information Access, Standard and Composition 16
 3.2.11 Step 8 - Determine System to System Interfaces 16
 3.2.12 Step 9 - Describe Data Exchanges (DEX), Business Object Documents (BOD) and Technical Document Requirements 17
 3.2.13 Step 10 Create Logistic Information Plan (Log IP) 17
 3.2.14 Overview of the Solution Description Steps 17

4 Part 3 – Applying the LCIA tool 18
 4.1 Meta model 18
 4.2 The LCIA 18
4.2.1 Generic domain 18
4.2.2 Context domain 21
4.3 LCIA Supra Model 21
4.3.1 Logical logistic support 21
4.3.2 Instances of logistic support 22
4.4 Utilisation of the LCIA 25

A Information Requirements 27
B Glossary 28

List of Figures

Figure 2-1 - LCIA Capability Definition 7
Figure 2-2 - LCIA Support Solution Definition 9
Figure 2-3 - LCIA to KSA 4 9
Figure 3-1 - LCIA Engagement Team Process 10
Figure 3-2 - LCIA Support Solution Components 12
Figure 3-3 - LCIA High Level Support Functions 13
Figure 3-4 - Support Solution Organisations 14
Figure 3-5 - LCIA Functions assigned to Organisations 14
Figure 3-6 - Assign Detailed LCIA Functions to Organisations 15
Figure 3-7 - Define MOD/Industry Information Exchanges 15
Figure 3-8 - Function – Information Access, Standards and Composition 16
Figure 4-1 - LCIA enterprise model 19
Figure 4-2 - LCIA top level functions 19
Figure 4-3 - Business function and transformation process 20
Figure 4-4 - Use of distribution point 20
Figure 4-5 - Maintenance business services 21
Figure 4-6 - Example of logical logistic support view 22
Figure 4-7 - Logistic elements responding to an event 23
Figure 4-8 - MOD & industry interface 23
Figure 4-9 - Capturing context information at the distribution point 24
Figure 4-10 - Additional project information can be captured at the distribution point 25
Figure 4-11 - Summary of the LCIA output 26

Table

Table A - 1 MOD Industry interface requirements 27
1 Introduction

1.1 Background

The Logistics Coherence Information Architecture (LCIA) grew from the 2006 Logistics Coherence Project which, jointly with Industry, defined the rules, tools and standards to enable the MoD and Industry to accelerate the transformation of end-to-end logistic information capability. It defined a joint target architecture underpinned by common processes, standards, information flows and measures of information performance, together with a compliance regime. In simple terms, LCIA provides a jointly-agreed generic description of the logistic functions that are performed during Engineering & Asset Management and Supply Chain operations, irrespective of who undertakes the tasks. This model is then used as a template for identifying logistic information needs to support in-service operation.

The key rationale underlying LCIA is that logistics information has significant value for through-life decision-making and it needs to be treated and managed as an asset. Until recently, many projects responsible for introducing capabilities into service did not adequately consider the logistics information required to support in-service operation and through-life management. Furthermore, many existing capabilities generate logistic information delivered in a large variety of inconsistent and incompatible formats that cannot be easily shared or utilised by current or planned logistics information systems. The aim of LCIA is therefore to identify the information that the stakeholders of a capability require to support in-service logistic decision-making.

In order to achieve consistency in logistic information for support solutions across Defence and industry, the MoD now mandates logistic information planning and recommends use of the LCIA to achieve this. The benefit of this is to vastly improve the quality and availability of logistics information required by decision-makers responsible for managing in-service Supply Chain and Engineering & Asset Management functions. The LCIA achieves this by identifying, in advance of contract award, the logistic information required to be exchanged by MoD and Industry during the operation of a CLS contract. It also helps identify who owns and provides the information and how it will be delivered to better support the Through-life Capability Management. Furthermore, using the LCIA and its associated information standards ensures that projects will be interoperable with both the MoD’s current and planned future logistics information systems.

Use of the LCIA provides other advantages to IPTs and Projects: it offers savings in time, effort and cost in getting to Main Gate, and assists the contracting process. LCIA also de-risks projects as logistic information needs, roles and responsibilities are clarified and contracted up front, based on best practice. It should be noted, however, that the LCIA is simply a tool that enables project stakeholders to define their logistic information sharing needs, and that the main benefit of LCIA is the delivery of a logistic information plan (Log IP) to support the in-service operation of a capability. This concept is described in this document.

This LCIA Guide has been developed to facilitate the deployment of the LCIA across the MoD. This document will be updated as the LCIA concepts mature and lessons from IPT engagements are identified and learnt.
1.2 **Aims**

The aim of this guide is to provide MoD and its industry partners with an overview of the LCIA. It has been split into three distinct sections:

1.2.1 **Part 1 – LCIA Overview**

This is an explanation of how the LCIA capability can be employed to bring benefit to the through-life information management of a support solution: it describes the logistic information exchanges between MoD and Industry in a support solution and informs the logistic information requirements for assurance against the Support Solution Envelope (SSE). The delivered description provides a base for a project to further develop its own support solution definition.

1.2.2 **Part 2 – Stakeholder Engagement**

This section provides an overview of the stages within the LCIA engagement process and detail how the MoD team engage with projects, assess a projects suitability to utilise the LCIA and with the projects assistance develop a description of the support solution.

1.2.3 **Part 3 – Applying the LCIA tool**

This section provides a detailed explanation of how the LCIA model can be used to obtain a tailored, modelled, description of a project-specific support solution and the associated MOD/Industry logistic information exchanges.

1.3 **1.3 Scope and Guidance**

This guide describes how the LCIA framework relates to a specific logistics support solution for both MoD and the Industry partner, and the locations at which logistics operations are carried out. It also shows the high level steps required to produce a logistic support solution model and logistics information plan (Log IP), using the LCIA as a guide. It takes into account function and information ownership at a location and mandated open standards for the exchange of technical, asset, engineering and supply chain information.

This guide will be updated as LCIA experience matures. The guide does not describe the detailed definition of interfaces.
2 Part 1 – LCIA Overview

2.1 Introduction

Information is a key Defence Line of Development (DLOD); it informs the other DLODs. To achieve consistency in logistic information for the support of equipment across Defence and industry, the MoD now mandates logistic information planning within the SSE Key Support Area (KSA) 4 and strongly recommends use of the LCIA to achieve this. The use of a defined logistic information architecture to provide coherence throughout the logistics process is a key component of the Defence Logistics Programme¹.

Figure 2-1 describes from a high level how the LCIA capability is employed. The LCIA will inform support solution design and more specifically highlight the logistic information that is required to support acquisition. This support solution description is then able to directly inform requirements for assurance against the governing policies within KSA 4, MOD/Industry logistic information exchange definitions in the form of a Log IP for project-specific support arrangements and logistic information definitions in a specific project’s Through-life Information Management Plan (TLIMP).

¹ Defence Logistics Programme 2007 Update, Part 3, Theme Two – Flexible Command and Control, Ref 2.2.2
2.2 Support Solution Description

Figure 2-2 provides a very high level description of a typical contracted logistic support solution for an asset. This solution has been split into three areas of operation: deployed at sea; forward in bases and workshops; and, at depth for asset management, spares storage and industry support. Each area has a number of organisations that exchange logistic information with other organisations found within its own area as well as organisations outside. These exchanges enable the solution to be managed and the asset to be maintained and provisioned throughout its life. The LCIA has been conceived to allow support solution designers to produce a model of their support option proposal containing all the necessary components in a consistent and coherent way. This is achieved by identifying the areas and organisations in which their solution will operate, the logistic functions that will be performed in each location, the information required to support those functions, the owners and standards of that information and the definition of the data being exchanged. The finished model provides a logistics information plan (Log IP) that can be used to inform a contract between MoD and its support partners, thus ensuring all parties are aware of the requirements and responsibilities on them to provide timely logistics information.
Use of the information definitions and functional models within the LCIA will provide a framework on which to base a project’s embryonic support solution and will ensure that the solution will be interoperable within the MoD’s defence-wide future logistics information systems, thus avoiding the development of further ‘stove-piped’ applications. Sections 3 & 4 of the guide provide a detailed explanation of how to utilise the LCIA to produce a description of a project-specific support solution.

2.3 Support Solution Envelope Assurance & TLIMP

A key advantage for IPTs and industry partners using the LCIA is that the developed support solution description will directly inform their requirements for assurance against the other governing policies within KSA 4 of the SSE. This concept is shown in Figure 2-3. The support solution design, underlying logistic functions and their functional and non-functional information requirements, will inform the project on whether the different governing policies contained within KSA 4, including TLIMP, affect their overall support solution requirements. For example, the requirement to use open standards for the system-to-system exchange of support information between the MOD and Industry (GP 4.3) can be discovered by identifying and assessing a specific solution’s candidate information exchanges. These candidates can be found by utilising the LCIA as a guide to describe the logistic information requirements for a specific support solution.

Figure 2-2 - LCIA Support Solution Definition

Figure 2-3 - LCIA to KSA 4

2.4 MOD/Industry Logistic Information Plans

The LCIA based, project-specific, support solution description also provides the ability to identify in advance the type of logistic information that MoD and Industry need to exchange when running a CLS contract; it also helps to identify who owns and delivers that information. This description can form the basis of any formal commercial agreements between the MoD and Industry on the assurance of logistic data delivery to meet agreed KPIs. This logistic information plan (Log IP) will be a key deliverable from the LCIA Engagement process. The definition process is discussed in more detail in sections 3 and 4.
3 Part 2 – Stakeholder Engagement

3.1 Project Engagement

A process of engagement, assessment, development, delivery and assurance has been developed to ensure effective execution of the LCIA methodology. This process is designed to ensure that the approach is repeatable and meets assurance requirements under the SSE. The overall process and a description of each stage are shown at Figure 3-1.

Figure 3-1 - LCIA Engagement Team Process

3.1.1 Identify Project - Assessment

The LCIA Engagement Team (Ensleigh) will assess the applicability of the LCIA to a specific project; this will be achieved through consultation with the SSE KSA 4 Owner or through direct contact with an IPT. It is essential that the LCIA team engage with the project at the earliest opportunity during the concept stage of the support solution, in order to ensure that the full capability of the LCIA is employed to achieve the maximum benefit for a project.

3.1.2 Brief and Engage – Key Stakeholders

When it is assessed that the LCIA would bring benefit and value to a project the LCIA team will engage directly with that project to organise an initial briefing with the project’s key stakeholders. Ideally, the team would brief the IPTL and ILS manager on the LCIA concept to explain its importance to their project and the benefits that would be provided to their support solution. The desired outcome from the initial briefing is an agreement to hold a number of workshops where the LCIA team engage with the project’s SMEs to capture a description of the support solution and its information requirements.
3.1.3 Capture and Collate – Logistic Information

Through engagement with the projects SMEs, a description of the support solution and its information requirements are collated by the LCIA engagement team.

3.1.4 Model – Map to the LCIA

The LCIA engagement team produce a model of the project’s support solution that describes the MoD/Industry support functions and the logistic information exchanged between them. As stated in section 2.4, the captured modelled logistics information plan will form the basis of a formal commercial agreement between the MoD and Industry on the assurance of logistic data delivery to agreed KPIs. The process of gathering results and modelling is iterative and will continue until it is believed that the modelled description of these exchanges is complete. With further development of the model, the project will be able to understand all of the underlying information requirements for their support solution. This information would then be able to inform the project’s TLIMP and assurance requirements against the whole of KSA4 of the SSE.

3.1.5 Maintain Definitions – Keep up to Date

A delivery date for the support solution description and matrix of logistic information exchanges will be agreed with the project. This definition will be maintained by the LCIA engagement team with further cooperation from the project.

3.1.6 Assurance - Results

The LCIA team will inform the SSE KSA 4 owner of the project’s level of assurance against the applicable governing policies based on the results from the engagement. The LCIA engagement team will present the assurance results as well as modelling outputs to the IPTL, ILS manager and workshop SMEs.
3.2 Describing a Project-Specific Support Solution Using the LCIA

3.2.1 Introduction

This section describes in detail the steps required to describe a project-specific support solution utilising the LCIA as a guide and general framework. The LCIA should be considered only as a reasoning tool to enhance project decision making about the real world. It is a model of logistic support functions and the associated information flows, not a model of logistic support process and procedure; as such is not time-related.

3.2.2 Solution Development Environment

It is assumed that once the reasoning process has been completed a project-specific logistic support solution description will be developed within an enterprise architecture modelling tool environment.

3.2.3 Reasoning Steps

The following sections describe at a high level the steps that will be required to start the process of describing your support solution using the LCIA. Figure 3-2 shows the various generic components that together describe a LCIA guided solution.

![Figure 3-2 - LCIA Support Solution Components](image)

Figure 3-2 - LCIA Support Solution Components
3.2.4 Step 1 - Decide CLS Contract Type

Each project team will decide the type of contracted logistic support (CLS) that it believes will offer the best value and benefit in assuring the maximum operational availability of the equipment during its life. The LCIA Support Options Matrix (SOM), found within the model, provides an overview of each current contract type used by the MOD. These may be either, Traditional, Spares Inclusive, Availability, Capability or a combination.

3.2.5 Step 2 - Decide High Level Logistic Support Functions

Once a project has decided upon the most suitable CLS arrangements for a support solution it is necessary to identify the logistic support functions that will be performed within that solution. It must be remembered that the LCIA is a functional model that provides an overview of ‘what’ needs to be achieved, it does not explain ‘how’ it should be achieved (the processes), although a project can add those answers to its model to ensure the chosen solution aligns with the real world. The figure below gives a number of examples of high level logistic support functions taken from the LCIA.

![Figure 3-3 - LCIA High Level Support Functions](image)

3.2.6 Step 3 - Define the Logistic Operation Organisations

Define the organisations within which the support solution will operate. Figure 3-4 gives an overview of the concept. The asset can be seen to be sited within the MOD during deployed operations and at its main base of operations, it is also found in Industry during its production, upgrade and for deep maintenance.
3.2.7 Step 4 – Assign LCIA High Level Support Functions to Organisations

For each of the support organisations that will be performing part of the overall support solution, assign the identified LCIA high level logistic support functions. The figure below gives an overview of the process; each high level function has been associated to the solution’s identified organisations.
3.2.8 Step 5 - Assign Detailed Logistic Functions to Organisations

For each LCIA high level support function, assign its LCIA lower level detailed functions to the high level function’s associated organisations. The figure below gives an overview of the process.

![Figure 3-6 - Assign Detailed LCIA Functions to Organisations](image)

3.2.9 Step 6 – Define MOD/Industry Information Exchanges

For each detailed function identified within a solution, determine the origin of its information requirements using the defined LCIA information categories as a guide. What function produced that information? What location does that function reside in? Who is the owner of that function? The answers to these questions will form the basis of your Log IP. See figure below.

![Figure 3-7 - Define MOD/Industry Information Exchanges](image)
3.2.10 Step 7 - Determine Information Access, Standard and Composition

For each highlighted logistic function owner: determine with them the current state of their function, how their information will be accessed, and the data standard associated with the information, its precise composition, its quality, its primacy, and its consolidation requirements and then determine how that information will be handled by the target (recipient) function.

![Diagram showing the flow of information between MOD, FLEET COMPOSITION, INDUSTRY PARTNER, OPS PLAN SUPPLY CHAIN, and ASSET USAGE.]

Figure 3-8 - Function – Information Access, Standards and Composition

3.2.11 Step 8 Create Logistic Information Plan (Log IP)

Using the support solution description produce a matrix detailing the MoD/Industry information exchanges and their non functional requirements. This matrix can form the basis of any formal commercial agreements between the MoD and Industry on the assurance of logistic data delivery to meet agreed KPIs. The matrix can also allow projects to then establish the relevant costs of information, and to inform decision-makers on roles and responsibilities for data ownership and for its management and stewardship. Log IPs should be reviewed and updated every 18 months and when significant organisational and capability changes are being planned.

3.2.12 Step 9 - Determine System to System Interfaces

Using the Log IP, with the highlighted logistic function owner, determine the business need and benefits to exchange information between functions via a system to system interface. Those found to be candidates are to use ISO 10303 AP239 PLCS for Engineering and Asset Management data, OAGIS 9 for Supply Chain data and ASD1000D for technical documents. These standards are
mandated requirements in the Acquisition Management System Support Solution Envelope section KSA 4 GP4.3.

3.2.13 Step 10 - Describe Data Exchanges (DEX), Business Object Documents (BOD) and Technical Document Requirements

For each information category that has been highlighted as a candidate for exchange via a system to system interface, determine whether existing DEX or BOD can be used to cover the requirements, or whether development of a new PLCS DEX or OAGIS BOD is required. The LCIA team has initiated a new work stream to ensure that the DEX/BOD development process is managed and that the use of open standards transformation functionality built by individual projects is available across the MoD logistics enterprise.

3.2.14 Overview of the Solution Description Steps
4 Part 3 – Applying the LCIA tool

The LCIA is an architectural model that describes the logistic business and focuses on the logistic information that needs to be shared between MoD and Industry to deliver an improved through-life capability management plan. Sections 2 and 3 describe the LCIA capability and how projects will be engaged; this section provides an overview of how the LCIA can be used.

For ease of understanding the model should be considered in three layers:

- Meta model.
- The LCIA.
- Supra model (the project facing view).

4.1 Meta model

The meta model describes the LCIA model structure and as such is outside the scope of this user guide.

4.2 The LCIA

The LCIA exists in two architectural domains:

- Generic.
- Context.

4.2.1 Generic domain

The foundation of the LCIA is an enterprise model. The structure of the model is shown at Figure 4-1.

The top level of this model identifies the logistic business functions. As presented at Figure 4-1 the functional view is developed through sub function layers to determine the information needs to support the functions. A logical data model developed from this supports an ‘information classes and categories’ structure and the standards and definitions that will support these.

2 The enterprise model is owned and maintained by MoD (ACDS Log Ops/AD Def Log Info) and Industry under the auspices of the UKCeB.

3 A function is a statement of what is performed (e.g. in terms of outputs), as distinct from how it is performed.
Figure 4-1 - LCIA enterprise model

The top level functions are shown at Figure 4-2. It should be noted that the LCIA provides a palette of all the functions that are available to both MOD and Industry. This can be tailored to reflect the capabilities of the logistic elements supporting a project.

Figure 4-2 - LCIA top level functions
The purpose of the LCIA is to understand the information needs of the logistic business and as such it is necessary to determine the information that these functions consume and generate. As shown at Figure 4-3 there will be a transformation process where a function will consume information and generate information in order to meet a business need. The function requires business services to handle the input and output of information. The LCIA is concerned with what a function does and not how it does it and therefore currently it does not describe the transformation processes.

Figure 4-3 - Business function and transformation process

Although the function generates information it does not know which other functions requires its output. To overcome this, a node called a distribution point is used as shown at Figure 4-4. Distribution points fulfill two needs in the model:

- They define which services can be connected to each other (bearing in mind that the services’ names, being particular to their individual functions, may not be obviously related).
- They link to the description of the information product(s) which the services exchange.

Figure 4-4 - Use of distribution point

4. Business services are the means by which a function contributes to or assists another function, or by which a function accesses the contribution of the services of other functions. Services are therefore classified as being either outgoing (producing) or incoming (consuming) services.

5. Distribution points are an abstraction used within the model to explain how the interactions between business services are composed. In the physical world, the role of the distribution points is fulfilled in various ways by any and all of the mechanisms supporting information exchange: LANs and WANs, formatted messages and information servers.
As an interface between functions the distribution point is the ideal point to collect information with regards the MOD/industry needs.

The LCIA defines the business services that support every function. As an example the business services supporting the ‘maintenance’ function are shown at Figure 4-5. The light blue section (left) denotes business services that consume information and the light green (right) show those that generate information.

4.2.2 Context domain.

The context domain of the LCIA is the supra model.

4.3 LCIA Supra Model

The LCIA is a complex architecture and project users do need to be conversant with it. A supra model will be built above the LCIA enterprise model and is the interface with the project. The build of the supra model will be project dependent and will usually consist of 2 parts:

- Logical logistic support.
- Instances of logistic support (response to events).

4.3.1 Logical logistic support
The logical logistic support view shows the logistic elements that support a project; an example is shown at Figure 4-6.

![Diagram](image)

Figure 4-6 - Example of logical logistic support view

The LCIA business functions and services are ‘cloned’ into every logistic element and those functions and services that the element does not undertake are then removed. The model will thus define the logistic functional capabilities of the elements and also identify the interfaces where information interactions need to be captured. These interfaces are shown as thick black lines in Figure 4-6.

4.3.2 Instances of logistic support

Figure 4-7 and Figure 4-8 shows how the supra model describes scenario events. As the information captured is event based both functional and non-functional requirements can be captured. In the same manner the model can show the consequences of organisational changes. The information attributes that can be captured at the distribution points are shown at Annex A. The attributes, and their granularity, will be project dependent.

6 Business events are something that happens to the business that makes the business system respond. Business events are such things as the IPT ‘receiving a defect report’, ‘providing configuration update’.
Figure 4-7 - Logistic elements responding to an event

Figure 4-8 - MOD & industry interface

Information is collated at the distribution point as shown at Figure 4-9. Using the LCIA generic model it is also possible to determine the necessary standards and data definitions for this information.
Figure 4-9 - Capturing context information at the distribution point

Figure 4-10 shows that if more information is available, such as technical systems, this can also be collated at the distribution point.
4.4 Utilisation of the LCIA

The outcome of section 4.3 is that all the project logistic information is captured at the distribution points. This information can be manipulated and collated in spreadsheets using the MooD® query and matrix functionality.

This spreadsheet will support:

- The Logistic Information Plan (Log IP) as the logistic information input to the Through-life Management Plan.
- Project logistic user requirements.

Figure 4-11 summarises the output from LCIA.
Figure 4-11 - Summary of the LCIA output
Information Requirements

Information requirements collated at the MOD/Industry interface are shown at Table A-1.

Information to be captured for every information exchange

<table>
<thead>
<tr>
<th>Requirement type</th>
<th>Attributes</th>
<th>Input/Output</th>
<th>Mandatory</th>
<th>Order</th>
<th>Comment on completion of field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td></td>
<td>Project</td>
<td>M</td>
<td>1</td>
<td>Description of the information exchange</td>
</tr>
<tr>
<td>Purpose</td>
<td></td>
<td>Project</td>
<td>M</td>
<td>1</td>
<td>What outcome is this information exchange supporting (i.e. success criteria)</td>
</tr>
<tr>
<td>Activity required</td>
<td></td>
<td>Project</td>
<td>M</td>
<td>1</td>
<td>What activity is this information exchange supporting</td>
</tr>
<tr>
<td>Event/ schedule (trigger)</td>
<td></td>
<td>Project</td>
<td>M</td>
<td>1</td>
<td>Is this exchange event or schedule driven and what is the event or schedule</td>
</tr>
<tr>
<td>Information type</td>
<td></td>
<td>Data entities</td>
<td>Project</td>
<td>M</td>
<td>List the information types that are being exchanged</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Data owner</td>
<td>Project</td>
<td>M</td>
<td>Who is the owner of the information - it may not be the source</td>
</tr>
<tr>
<td>Information source</td>
<td></td>
<td>Project</td>
<td>M</td>
<td>3</td>
<td>For this particular exchange who is the source of the information</td>
</tr>
<tr>
<td>Generating information node</td>
<td></td>
<td>Function</td>
<td>Project</td>
<td>M</td>
<td>Captured from the LCIA model</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LCIA business service</td>
<td>M</td>
<td>2</td>
<td>Captured from the LCIA model</td>
</tr>
<tr>
<td></td>
<td></td>
<td>System (technical)</td>
<td>Project</td>
<td>3</td>
<td>Source system/application</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cell/ application</td>
<td>Project</td>
<td>4</td>
<td>Input generating information</td>
</tr>
<tr>
<td>Consuming information node</td>
<td></td>
<td>Function</td>
<td>Project</td>
<td>M</td>
<td>For this particular exchange who is the sink of the information</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LCIA business service</td>
<td>M</td>
<td>2</td>
<td>Captured from the LCIA model</td>
</tr>
<tr>
<td></td>
<td></td>
<td>System (technical)</td>
<td>Project</td>
<td>3</td>
<td>Sink system/application</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cell/ application</td>
<td>Project</td>
<td>4</td>
<td>Output consuming information</td>
</tr>
<tr>
<td>Interaction responsibility</td>
<td></td>
<td>Function</td>
<td>Project</td>
<td>M</td>
<td>Logistic element responsible for exchange assurance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LCIA enterprise function</td>
<td>Project</td>
<td>3</td>
<td>Network infrastructure used by the exchange</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Classification</td>
<td>Project</td>
<td>M</td>
<td>Captured from the LCIA model</td>
</tr>
<tr>
<td>Non functional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presentation (look and feel)</td>
<td></td>
<td>Project</td>
<td>M</td>
<td>4</td>
<td>How the user wants the information presented - spreadsheet</td>
</tr>
<tr>
<td>Exploitation (usability)</td>
<td></td>
<td>Project</td>
<td>M</td>
<td>4</td>
<td>How well the user exploits the information</td>
</tr>
<tr>
<td>Performance</td>
<td></td>
<td>Project</td>
<td>M</td>
<td>4</td>
<td>Defines time, speed, coverage and accuracy</td>
</tr>
<tr>
<td>Operational (environment used in)</td>
<td></td>
<td>Project</td>
<td>M</td>
<td>4</td>
<td>Defines the environment to be used in (i.e. office, on board ship, deployed etc)</td>
</tr>
<tr>
<td>Persistence</td>
<td>Asset life</td>
<td>Project</td>
<td>M</td>
<td>4</td>
<td>Determines the life of the information</td>
</tr>
<tr>
<td>Security</td>
<td>Classification</td>
<td>Project</td>
<td>M</td>
<td>3</td>
<td>Defines information security classification and caveats</td>
</tr>
<tr>
<td></td>
<td>Availability</td>
<td>Project</td>
<td>M</td>
<td>4</td>
<td>Who should the information be available to/ Archiving policy</td>
</tr>
<tr>
<td>Integrity</td>
<td>Error detection</td>
<td>Project</td>
<td>M</td>
<td>4</td>
<td>Confidence in completeness of the information</td>
</tr>
<tr>
<td>Audit trails</td>
<td>Recovery mechanism for exchange information</td>
<td>Project</td>
<td>M</td>
<td>4</td>
<td>Recovery mechanism for exchange information</td>
</tr>
<tr>
<td>Cultural and political requirements</td>
<td></td>
<td>Project</td>
<td>M</td>
<td>4</td>
<td>Defines any MOD or Industry cultural and political requirements (includes Commercial needs)</td>
</tr>
<tr>
<td>Legal requirements</td>
<td></td>
<td>Project</td>
<td>M</td>
<td>4</td>
<td>Defines legal requirements</td>
</tr>
</tbody>
</table>

Table A - 1 MOD Industry interface requirements
Glossary

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOD</td>
<td>Business Object Document</td>
</tr>
<tr>
<td>CfA</td>
<td>Contracting for Availability</td>
</tr>
<tr>
<td>CfC</td>
<td>Contracting for Capability</td>
</tr>
<tr>
<td>CLS</td>
<td>Contracted Logistic Support</td>
</tr>
<tr>
<td>DEX</td>
<td>Data Exchange Specifications</td>
</tr>
<tr>
<td>DLOD</td>
<td>Defence Lines of Development</td>
</tr>
<tr>
<td>GP</td>
<td>Governing Policy</td>
</tr>
<tr>
<td>ILS</td>
<td>Integrated Logistic Support</td>
</tr>
<tr>
<td>IPT</td>
<td>Integrated Project Team</td>
</tr>
<tr>
<td>IPTL</td>
<td>Integrated Project Team Leader</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organisation for Standardisation</td>
</tr>
<tr>
<td>KPI</td>
<td>Key Performance Indicator</td>
</tr>
<tr>
<td>KSA</td>
<td>Key Support Area</td>
</tr>
<tr>
<td>LCIA</td>
<td>Logistics Coherence Information Architecture</td>
</tr>
<tr>
<td>Log IP</td>
<td>Logistics Information Plan</td>
</tr>
<tr>
<td>MoD</td>
<td>Ministry of Defence</td>
</tr>
<tr>
<td>OAGIS</td>
<td>Open Applications Group Interface Specification</td>
</tr>
<tr>
<td>PLCS</td>
<td>Product Lifecycle Support</td>
</tr>
<tr>
<td>SME</td>
<td>Subject Matter Expert</td>
</tr>
<tr>
<td>SOM</td>
<td>Support Options Matrix</td>
</tr>
<tr>
<td>SSE</td>
<td>Support Solution Envelope</td>
</tr>
<tr>
<td>TLIMP</td>
<td>Through-life Information Management Plan</td>
</tr>
</tbody>
</table>
Distribution list

External

Internal
The Logistics Coherence Information Architecture (LCIA) grew from the 2006 Logistics Coherence Project which, jointly with Industry, defined the rules, tools and standards to enable the MoD and Industry to accelerate the transformation of end-to-end logistic information capability. It defined a joint target architecture underpinned by common processes, standards, information flows and measures of information performance; together with a compliance regime. In simple terms, LCIA provides a model description of most of the logistic functions that are performed when performing Engineering & Asset Management and Supply Chain operations. This is then used as a template for identifying logistic information needs to support in-service operation. This guide provides MoD and industry partners with an overview of the LCIA.