Chapter 5: Rail Freight

Strengths
- Modern locomotives and rolling stock are generally available
- Competition between major rail freight operators in Wales
- Good rail infrastructure – providing rail links to most of the main centres in Wales, and links to the main markets in the rest of the UK and Europe
- Low CO\(_2\) and other emissions compared to road freight
- New rail business is being won by all the existing freight operators in the region with the majority of rail freight running without subsidy

Weaknesses
- Short-term variability for some freight movements contrasts with stability of passenger services, and high fixed costs can make it difficult to respond to short-term business changes
- Some network constraints (such as potential capacity pinch-points, 24 hour access not always available and some gauge restrictions)
- Availability of specialist stock (such as wagons for hi-cube containers) can be limited
- New developments often fail to fully consider rail – for example, distribution sites next to the rail network typically do not make provision for possible rail access
- Availability and choice of rail terminals is not particularly well-understood by the wider freight industry
- Funding for network improvements and capital assistance for operators is scarce

Opportunities
- Road congestion may work in favour of rail freight services
- Working Time Directives could have less affect on rail operation (than road)
- Competition and investment by operators can improve reliability and service to users
- Growing acceptance of the need to reduce emissions from transport, and hence making more use of environmentally friendly modes of transport such as rail
- Grants are available to assist developments in rail freight use

Threats
- Funding for network improvements and grant support for infrastructure is still uncertain; lack of long-term funding commitment undermines new interest in rail from industry
- Passenger train aspirations could impact on freight path availability
- Potential increase in freight track access charges
- Future distribution locations not taking long term rail potential into account
- Perception of rail freight (by some in industry) as not sufficiently customer focused
- Road transport and short sea shipping feeder services provide intense competition for longer distance rail-based container flows
5.1 Background

Rail freight in Wales developed historically around the coal and steel industries, and indeed many railways in South Wales in particular were originally built to take coal from the mines to customers and ports. Much of the rail freight business in Wales is still centred around those same commodities, although imports are now as likely to be carried as exports.

Modern rail freight businesses are structured differently to rail passenger businesses. In particular, whereas passenger services are run through franchises and generally receive some form of subsidy, rail freight services are owned and operated commercially, paying an access charge to use the rail network. Passenger services are also relatively stable, operating broadly the same services for several years at a time, where rail freight responds to its customers needs. There are also some key operational differences. In general, rail freight services are far less frequent than passenger services, and may run on a less than daily basis. Also, freight services typically operate Monday-Friday and are often limited at weekends.

There are two main types of rail freight operation:

- Freight services for bulk products generally run with limited intermediate stops, with origins and destinations in specific rail terminals (such as power stations and steel works). Trains are scheduled to meet customer requirements although may follow an established pattern. Services can be seasonal and/or relate to industrial output or import/export patterns; and
- Inter-modal services generally have a schedule onto which wagon space can be individually booked. Some are scheduled overnight to permit a morning delivery at final destination. However, operating overnight can conflict with maintenance, which tends to be scheduled outside peak passenger periods.

Rail Industry Issues

A number of rail industry strategy initiatives could impact on rail freight in Wales:

Rail Planning Assessment (RPA): 11 RPAs cover England and Wales, linking spatial planning and planning for the railway by both government and the rail industry. They were initiated by the SRA, and have been taken forward by the DfT and Welsh Assembly Government, to look at the challenges and options for development of the railway over 20 years, in the context of forecasts for population, the economy and travel behaviour. The Wales RPA has been published. The RPA does not commit to specific proposals, but sets out current thinking on how the railway might be developed relating to wider planning objectives, and identifies priorities for further development.

Route Utilisation Strategy (RUS): a programme of 18 RUSs are seeking to balance capacity and passenger/freight demand with the operational performance and cost of the rail network. Network Rail is developing RUSs in conjunction with rail industry partners and wider stakeholders, to inform the development and delivery of timetables, infrastructure maintenance and renewals. Two RUSs are of particular relevance to the rail network in Wales:

- Freight RUS – (completed in March 2007) covers freight issues across the whole of Network Rail (including Scotland) and informs other area-based RUSs; and
- Wales RUS (including lines in the Borders) – this will also consider the results of the Wales RPA and relevant Local/Regional Transport plans, and is due to be completed towards the end of 2008.
Periodic Review 2008: the Office of Rail Regulation’s (ORR) 2008 periodic review (PR08) will set Network Rail’s outputs, revenue requirement and access charges for the fourth 5-year ‘control period’ (CP4) from 1 April 2009 to 31 March 2014. PR08 determines the appropriate financial and incentive framework for Network Rail and reviews the potential for efficiency savings in its expenditure. It is the first periodic review to take place since the Railways Act 2005, which introduced a new process based around High Level Output Specifications (HLOS) and Statements of Funds Available (SOFA) produced by the Secretary of State for Transport and by Scottish Ministers. This also requires the need for a detailed understanding of whole-industry costs and benefits when undertaking the review.

Strategic Freight Network: The DfT’s 2007 White Paper ‘Delivering a Sustainable Railway’ proposed a ‘Strategic Freight Network’ (SFN) for England and Wales; the SOFA allocated up to £200m for developing the SFN in CP4. Overall, the SFN should have sufficient capacity for growth, with limited conflicts between passenger and freight traffic, and include defined diversionary routes for core routes (with the objective of ensuring availability), as well as minimise freight movements via London. The network should provide for longer trains with appropriate axle loads and loading gauge. SFN routes relating to Wales could include the South Wales main line to Swansea (from both Gloucester and the Severn Tunnel) and the Marches line from Newport to Crewe and Shotton.

The EU is also promoting policies aimed at a pan-European rail network giving priority to freight, and member states are being urged to contribute actively to the development of a rail network that facilitates efficient flows of international rail freight. This is linked to overall EU connectivity and transport networks policies.

5.2 Current Situation

The UK rail freight industry has grown significantly in the last 10 years, since privatisation, increasing its market share and largely reversing the long-term decline in demand for rail freight observed over the preceding 40 years or more. Furthermore, rail freight traffic is forecast to continue to grow, with the biggest increase forecast in the volume of maritime containers, which is predicted to double over a 10-year period.

Most rail freight services in Wales run in South Wales, with some services in North Wales but very limited operations in Mid Wales, and by far the majority of rail freight movements are between places in Wales and England/Scotland. Over 8 million tonnes of freight uses the South Wales main line between Newport and Swansea; less than 1 million tonnes is carried by the North Wales Coast line. The Marches line carries over 2 million tonnes per annum. There are commensurately fewer movements in North Wales, with regular services approximately 10% of the number in South Wales. The main UK rail freight operators, EWS and Freightliner, are active in Wales, and some more limited traffic is carried by other operators. The largest rail freight operator, EWS, runs around 500 services per week in South Wales. The vast majority of rail freight services in Wales run without direct subsidies.

Freight currently using rail in South Wales includes steel, coal to power stations from sources within Wales as well as other parts of the UK and overseas, coal to other destinations, automotive traffic, aggregates, oil and petroleum products, scrap metal and containers. Steel-related rail freight represents around half of all services. North Wales rail freight activity includes aluminium products, steel, nuclear waste, stone and aggregates, coal and timber.
Although rail freight services are regularly scheduled, there can be significant variations in demand. For example, as steel prices increase, there can be increased demand for scrap steel.

5.3 Rail freight interacting with other modes

The interaction between rail freight and other modes is dependent on the commodity transported. For instance, rail haulage of bulk items is typically between dedicated rail-linked terminals, which could be located at the original source, the final destination, ports and/or distribution depots. Good examples of this are coal which is typically transported directly between coal mines or ports and power stations, and aggregates travelling between quarries and storage depots.

Where dedicated terminals do not exist at origins and destinations rail freight relies on transhipment to/from road vehicles. The availability or otherwise of facilities to enable this to happen is important to the ability of rail to be considered as an alternative to road for at least part of a journey. In particular, this includes rail-connected terminals to enable transfer between road and rail (especially using inter-modal equipment such as containers and swap-bodies), as well as connections to ports so that incoming or outgoing freight can use rail for direct access.

Wentloog International Terminal

– example of an existing international inter-modal freight terminal. Located to the east of Cardiff, the terminal opened in February 2001 and is operated by Freightliner. The main aim of setting up the terminal was to help move products to/from key European markets by rail, over land and through the Channel Tunnel, though in the event it caters more for domestic movements within the UK.

5.4 Future Prospects

Freight Forecasts

Rail freight traffic in the UK is forecast to continue to grow. Network Rail’s Freight RUS outlines forecast scenarios for the main commodities carried by rail, which includes forecasts produced by the industry on a ‘top-down’ and ‘bottom-up’ basis. These forecasts for 2014/15 rail freight demand in the UK, alongside corresponding rail freight lifted in 2003, are shown in Table 5.1.

The forecasts identify the potential for an overall increase of over 25% in UK rail freight demand, with more significant increases in some commodities. For instance, the volume of maritime containers in particular is predicted to increase by 70-80%, and international (Channel Tunnel) and inter-modal traffic considered to more than double.

When these forecasts are assigned to the key freight routes on the rail network in Wales, the South Wales main line is forecast to carry over 12 million tonnes of freight in 2014/15, with freight using the Marches line increasing to more than 3 million tonnes.

External Issues

There are a number of specific issues and opportunities that could affect rail freight development or in which the industry could participate. For instance, road congestion may work in favour of rail freight services in making competing options less cost effective. Similarly, although the effect to date has been limited, revisions to the working time directive could alter the economics of road freight. It is possible that the rail freight industry itself could also be directly affected, albeit to a lesser extent.

Changing distribution models and markets create opportunities for rail freight and rail connected terminals. For example, port
Based distribution centres in both North and South Wales could be linked by rail to markets in the North West, Midlands and South West England. This would reduce overland haul lengths by bringing overseas cargo as close as possible to the origin and destination of goods.

There is a growing recognition of a need to reduce emissions from transport, and hence making more use of environmentally friendly modes of transport where practicable becomes a greater imperative. Rail freight is an environmentally efficient mode. Grants are available to assist in this, but a degree of uncertainty surrounds their longer-term availability. Industry trends such as increasing staff flexibility, multi-skilled workers and annualised hours contracts also all seek to increase the viability of rail freight, and continued competition and investment by freight train operators can improve reliability and the service to end users.

Infrastructure

The current round of rail strategy development and HLOS will feed into the Periodic Review of rail access charges, framing the funding regime for the railways and determining the track access charges that the operators must pay to use the rail network. The Welsh Assembly Government is already working with DfT and Network Rail Freight Route Utilisation Strategy (2007)

Notes

1. ‘Bottom-up’ forecasts were prepared by the Rail Freight Operators’ Association (RFOA), based on the operators’ experience of their own markets, using a combination of market intelligence, trends and economic and other drivers.

2. ‘Top-down’ forecasts were prepared by the Rail Freight Group (RFG) and Freight Transport Association (FTA), using analysis based on the GB Freight Model, an established tool employed by the DfT (and formerly the SRA) to forecast freight movements.

3. Earlier (pre-publication) ‘top-down’ forecasts for Coal were 52.9mt.

4. Network Rail’s own rail freight haulage for track maintenance and renewals is not included; in 2003 this was 7.4mt; forecasts suggest this will be around 6.5mt per annum by 2014/15.

Table 5.1: UK Rail Freight Industry Forecasts (annual million tonnes lifted)

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Actual 2003</th>
<th>Forecasts (2014/15) ‘Bottom-up’</th>
<th>‘Top-down’</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>46.0</td>
<td>50.5</td>
<td>43.1</td>
<td>94-110</td>
</tr>
<tr>
<td>Metals</td>
<td>10.5</td>
<td>14.6</td>
<td>12.1</td>
<td>115-139</td>
</tr>
<tr>
<td>Ore</td>
<td>6.1</td>
<td>5.9</td>
<td>6.0</td>
<td>93-98</td>
</tr>
<tr>
<td>Other Minerals</td>
<td>19.7</td>
<td>23.6</td>
<td>31.5</td>
<td>120-160</td>
</tr>
<tr>
<td>Waste</td>
<td>2.2</td>
<td>1.8</td>
<td>2.3</td>
<td>82-105</td>
</tr>
<tr>
<td>Petroleum and chemicals</td>
<td>6.8</td>
<td>7.1</td>
<td>7.0</td>
<td>103-104</td>
</tr>
<tr>
<td>Channel Tunnel</td>
<td>2.0</td>
<td>6.0</td>
<td>6.5</td>
<td>300-325</td>
</tr>
<tr>
<td>Domestic inter-modal/wagonload</td>
<td>0.9</td>
<td>2.5</td>
<td>6.5</td>
<td>278-722</td>
</tr>
<tr>
<td>Maritime Containers</td>
<td>11.1</td>
<td>20.3</td>
<td>18.8</td>
<td>169-183</td>
</tr>
<tr>
<td>Auto</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>125-150</td>
</tr>
<tr>
<td>Total</td>
<td>105.7</td>
<td>132.8</td>
<td>134.1</td>
<td></td>
</tr>
</tbody>
</table>

Index (compared to 2003) 100 126 127

Source: Network Rail Freight Route Utilisation Strategy (2007)

Notes

(1) ‘Bottom-up’ forecasts were prepared by the Rail Freight Operators’ Association (RFOA), based on the operators’ experience of their own markets, using a combination of market intelligence, trends and economic and other drivers.

(2) ‘Top-down’ forecasts were prepared by the Rail Freight Group (RFG) and Freight Transport Association (FTA), using analysis based on the GB Freight Model, an established tool employed by the DfT (and formerly the SRA) to forecast freight movements.

(3) Earlier (pre-publication) ‘top-down’ forecasts for Coal were 52.9mt.

(4) Network Rail’s own rail freight haulage for track maintenance and renewals is not included; in 2003 this was 7.4mt; forecasts suggest this will be around 6.5mt per annum by 2014/15.
Rail and there is clearly merit in other stakeholders working within this process and participating in the forthcoming Wales RUS.

A variety of network enhancements that are not specifically targeted at freight should be exploited. For instance, there are opportunities for rail freight in re-signalling schemes, which could include enhancements to the benefit of both passenger and freight services. The existing network also presents opportunities for future rail freight movements, particularly in rural areas. Such initiatives could include use of innovative technology or practices, re-invigoration of moth-balled lines and developing new diversionary freight routes to provide resilience and security of supply of services.

5.5 Impacts and Outcomes

Social

‘Connecting the nation’ seeks to improve access to life opportunities, and these outcomes are focused on people, and not directly related to freight transport. However, there may be circumstances where the rail freight industry, as a potential employer, could also play a part in improving opportunities for employment in key areas. In addition, another indirect consequence could be observed in the potential to reduce road accident rates with the transfer of existing road-based movements to rail.

There could be some tension between a desire to develop passenger services to assist in meeting social (or economic) outcomes. For instance, in situations where rail capacity is scarce, increased demand for passenger services could impact on the availability of freight, unless sufficient paths are protected.

Economic

Facilitating the efficient and reliable movement of freight and connecting Wales with its markets are key outcomes of the ‘Connecting the nation’.

Rail freight is a key over-land mover of bulk goods, in particular for energy, raw materials in heavy industries and some part-finished and finished products. In the movement of bulk goods in particular, rail has clear economic (as well as environmental) advantages over road transport. Making efficient use of the rail network is enshrined in ‘Connecting the nation’, though there is some scope for tension between aspirations to transport people and freight.

Environmental

The positive environmental impacts of transferring goods from road to rail are clear, where a typical freight train can remove 50 goods vehicles from the road network. Although varying by commodity and with load factors, compared with carrying the same tonnage by road, rail typically produces less than 10% of the carbon monoxide; around 5% of the nitrogen oxide; less than 9% of the fine particulates and around 10% of the volatile organic compounds. Similarly, a tonne of freight carried by rail produces at least 80% less carbon dioxide than by road. There is also significant public support for freight traffic being moved by rail. Table 5.2 provides a comparison between road and rail freight for key emissions.

In addition, apart from the environmental benefits, moving freight by rail can represent a more efficient use of available infrastructure, especially where spare capacity exists on the rail network, and/or there are capacity constraints on the road network. Moving freight by rail should also contribute to improved transport safety, as a
services which are desirable for passengers can have an impact on the number or timing of freight paths. This can in turn impact on freight operators’ flexibility, though there is usually scope to include paths for freight if timetabling is carefully managed.

Another important factor is loading gauge. This determines how wide and high are the rail vehicles that can safely travel a route, clear of platform edges, bridges and tunnels, and other railway infrastructure installations. Whereas the loading gauge on key lines in Wales is adequate for the majority of traditional freight (generally it is ‘W8’ on the main lines), there is an increasing use of larger 9ft 6in tall ‘big box’ and ‘hi-cube’ containers by maritime shippers that require a larger loading gauge (known as ‘W10’ or ‘W12’). Wentloog international terminal currently has a very small number of large size containers running into the terminal, but given existing loading gauge constraints, these are carried on specialised low-level wagons.

While low-level wagons clearly offer a solution, they are currently of limited availability, though there is scope to secure the use of more low-level wagons as routes elsewhere in the UK are improved and their use is no longer required. However, they can suffer from technical issues relating to the small diameter of the wheels, and a capability to fully cater for the growing number of (larger) maritime containers using conventional wagons is the primary driver of the very good safety record of rail. The Rail Freight Group estimates that over the past 6 years rail freight has saved two million tonnes of pollutants, 6.4 billion lorry kilometres and 31.5 million lorry journeys.

As with all ‘heavy’ transport, there are negative environmental effects of rail freight. For instance, encouraging rail freight can give rise to some local environmental impacts, such as noise in the vicinity of rail lines. Also, freight interchanges can have an impact, as they require large areas of land and can give rise to landscape and noise intrusion.

5.6 Potential Issues

Key barriers and success factors in promoting rail freight relate to infrastructure issues, costs, and the structure of the industry itself.

Infrastructure

In order to encourage rail freight, it is clearly necessary for paths to be available for running freight trains, but in some parts of the rail network, capacity pinch points have an adverse effect on both passenger and freight operations. The available capacity is determined by a combination of signalling and track infrastructure, overlaid with the demand from passenger and freight operators, as well as maintenance and renewal requirements. Regular interval

<table>
<thead>
<tr>
<th>Mode</th>
<th>PM10</th>
<th>CO₂</th>
<th>CO</th>
<th>NOx</th>
<th>SO₂</th>
<th>VOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rail</td>
<td>0.004</td>
<td>15</td>
<td>0.032</td>
<td>0.31</td>
<td>0.016</td>
<td>0.021</td>
</tr>
<tr>
<td>Road</td>
<td>0.048</td>
<td>180</td>
<td>0.33</td>
<td>1.74</td>
<td>0.005</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Source: SRA February 2005

Key: PM10 particulate matter of less than 10 microns; CO₂ carbon dioxide; CO carbon monoxide; NOx oxides of nitrogen; SO₂ sulphur dioxide; VOC volatile organic compounds

Table 5.2: Comparison of Emissions of Road and Rail Freight (emissions in g per tonne-km)
behind measures to increase loading gauge. This needs to be explored with the major retailers and their UK distribution plans.

Although Network Rail’s Freight RUS includes the longer-term aspiration to provide W12 clearance to South Wales via Gloucester and the Severn Tunnel, there are no specific plans to improve loading gauges in Wales. The proposed SFN includes the South Wales main line with ‘at least’ W10 gauge to Cardiff (from both Gloucester and the Severn Tunnel), though less than W10 beyond. The Marches line from Newport to Crewe and Shotton is also less than W10 in the SFN. It is worth noting that much rail freight to/from South Wales uses the Severn Tunnel, and work required to increase the loading gauge of the tunnel would be very significant. There have been extensive studies of the North Wales main line to Holyhead, considering both electrification and increasing the loading gauge to carry piggy-back lorry traffic, particularly looking at land-bridge potential for Irish movements.

Line speed (track speed limit) is another issue affecting freight services, though freight trains typically travel at lower speeds than passenger services. Most of the Welsh main line rail network has line speeds between 130km/h and 170km/h, though there are a number of locations where specific structures or curves impose a lower speed limit. Off the main routes, speeds are below 130km/h, and as low as 50km/h on some freight-only branch lines. Newer wagons with speeds of 100-120km/h can travel as fast as stopping passenger services. Older wagons typically have vehicle speed limits of below 100km/h. There are no current plans to undertake any work to improve line speeds in Wales. The priority for routes in Wales is to maintain existing standards.

Other infrastructure limitations can be train length and weight. Occasionally length can be an issue for freight trains, as they are typically longer than passenger services. However, this is not currently an issue in Wales or expected to become one. The ‘route availability’ defines the types of rolling stock that can use a particular route based on the axle weight. The key lines in North and South Wales have a route availability which allows most types of standard rail wagons to be used.

Rail freight gauge enhancement in Scotland – the Scottish Executive is promoting a £4 million investment to enhance the rail gauge and permit larger containers and other rail freight movements between Mossend, Aberdeen and Elgin. The project, devised by the North East Scotland Rail Freight Development Group in partnership with the Scottish Executive, Network Rail and the Strategic Rail Authority, allows the transfer of an estimated 1.3 million tonnes of freight from road to rail.

Costs

Although most rail freight flows run without any form of subsidy, a common barrier to development of rail freight is cost, in terms of infrastructure development and in moving goods. In particular, the need to tranship goods between rail and road vehicles for part of many journeys impacts on costs. As haul lengths in Wales (and the UK in general) are comparatively short, this increases the proportional effect transshipment can have on total costs.

Infrastructure work within terminals or sidings can generally be implemented at fairly modest cost, but schemes affecting main line operation have been difficult to achieve, particularly as the testing and commissioning regime can be onerous. While Network Rail’s priority focus is on maintaining and renewing the infrastructure, it will also consider enhancement and
development. However, there have been examples of where schemes that appeared modest at the outset have in fact ended up being much more expensive, or taking longer to achieve than originally expected.

Rail freight has been successful at attracting and retaining traffic, but the situation varies according to market sector. In some markets, especially inter-modal movements, the cost to customers of rail can be an expensive way to move freight in comparison with road haulage in a market where decisions are made primarily on price. One way to overcome this is for public bodies to provide grants to offset these differences. Although revenue subsidy schemes are common in passenger transport, they have been more limited for freight. Grants have traditionally been awarded for ongoing operations, but it may be more appropriate to take a funding decision for a single year, or the period of a one off contract.

Three types of grant are currently available to help meet the extra cost that may be associated with moving freight by rail.

- Freight Facilities Grant (FFG) – helps offset the capital cost of providing rail and water freight handling facilities; and
- Rail Environmental benefit Procurement Scheme (REPS) – this is in two parts, and currently is set to run from April 2007 to March 2010:
 - REPS Inter-Modal – for the purchase of inter-modal container movements, which has replaced the previous Company Neutral Revenue Scheme (CNRS); and
 - REPS Bulk – for the purchase of other rail freight movements, which has replaced Track Access Grant (TAG).

Details of administration and guidance for the use of the revised grant procedures, as well as the on-going role of the Welsh Assembly Government in administering the new grant regimes in Wales, are to be confirmed.

Celsa, Cardiff, 2005 – an example of freight grants already at work in Wales is the £2.2m Freight Facilities Grant awarded by the Welsh Assembly Government to support the development of rail freight facilities at the company’s Cardiff sites. Rail facilities will handle inbound train loads of raw materials and outbound train loads of finished steel products, removing over 300,000 lorry journeys from roads over 10 years (nearly 80 million road freight kms).

Structure of the Industry

Although many organisations, such as the Rail Freight Group, Network Rail and the rail freight operators, offer support for those seeking to put freight on rail, it remains a complex business. In contrast to road haulage where start up is very easy, it is complex to organise access to terminals and paths, as well as hire of locomotives wagons and crews. Traditional road or shipping organisations sometimes employ specialists to attempt to grow the rail part of their business, but this is seen as a long process. Many possible developments are planned and prepared but relatively few are ultimately developed to an operational status.

Furthermore, although the structure of the rail freight industry is intended to facilitate open access, in practice, existing operators often continue to use their own terminals and those of their customers. Cost can prevent other companies from using the facilities, meaning that open access can exist more in theory than in practice.
5.7 Steps Towards Delivery

Suggested ‘steps towards delivery’ specifically related to rail freight include the following, relating back to the hierarchy themes of the strategy as indicated – Spatial, Mode Split (MS) & Making Best Use (MBU):

Ra1	The Welsh Assembly Government and other stakeholders should continue to work with Network Rail/DfT to ensure that the needs of the freight industry in Wales are taken into account in making decisions about rail infrastructure and train path allocation in Wales.
Ra2	The principal aim should be to increase the carrying capacity of the railway as cost effectively as possible, focusing on the passenger and freight links which make the biggest contribution to competitiveness and productivity, and reduce whole systems life cycle carbon emissions per tonne-km. This needs to reconcile the potential for conflict between the demands of freight and passenger services where pathing capacity is limited, as well as consider technical requirements such as signalling and take into account potential future changes such as electrification. As part of this, specific needs and issues for rail freight should be considered, such as loading gauge, train weights and lengths, and operating speeds.
Ra3	The Welsh Assembly Government will seek to develop its role further in the specification of rail infrastructure use and development. In addition, consider how the organisation of Network Rail can best respond to the rail freight needs of Wales, including perhaps options for a Wales based route organisation.
Ra4	Continually review the way that grants and subsidy schemes are implemented in Wales, with a view to encourage modal shift to rail, as part of considering the grant regime for attracting freight to use more environmentally friendly modes. Changes to grant regimes are currently being implemented at Welsh Assembly Government, DfT and EU levels.
Ra5	There is a specific need to identify potential options for multi-modal terminals.
Ra6	Following on from this, land-use policies should seek to ensure that opportunities for promoting rail freight facilities are protected, particularly relating to protection of former railway lands that could potentially be returned to use as direct rail connections or road-rail interchanges.
Ra7	Where Regional Transport Consortia identify potential opportunities for passenger and/or freight rail developments, the promoters should carry out outline capacity studies prior to detailed negotiations with Network Rail and potential operators. It is suggested these studies could use scenario planning to put the proposals in a variety of contexts, as well as consider the cost and potential timescale of implementation. Outputs should also include the potential environmental benefits, for instance calculating ‘sensitive lorry miles’ saved (making use of standard methodologies where available).