Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toolbox talks</td>
<td>2</td>
</tr>
<tr>
<td>Operations flowchart</td>
<td>12</td>
</tr>
<tr>
<td>Operations checklist</td>
<td>13</td>
</tr>
</tbody>
</table>
TOOLBOX TALK 1

FINDING OUT WHAT RE-USABLE SOIL RESOURCES ARE ON SITE

WHAT?
Inadequate identification and protection of clean soil resources can result in:
- good soil becoming mixed with spoil or contaminated materials that then need to be disposed of to landfill; and
- a need to import soils for landscaping.

WHY?
- **Avoid environmental harm:** Topsoil that is reused beneficially reduces the impacts of needing to treat it or to dispose of it to landfill.
- **Reduce costs:** Good topsoil can be expensive to import into a site. Topsoil that becomes mixed with subsoil or wastes will have to treated or even be sent to tip and incur landfill tax.

DO
- ✔ Commission a soil resources survey before any earthmoving operations start.
- ✔ Ensure that the survey is carried out by suitably qualified and experienced soil scientist (www.soilscientist.org).
- ✔ Ensure that analyses are undertaken by an appropriate UKAS/MCERTS accredited laboratory.
- ✔ Ensure liaison between the soil resource survey and other ground investigations as each might have information useful to the other.
- ✔ Incorporate the results into the site Materials Management Plan and/or Site Waste Management Plan.

DON’T
- ✗ Rely on a geotechnical survey or investigation of land contamination for detailed information on re-usable topsoil and subsoil resources.
TOOLBOX TALK 2

SOIL PLANNING & MANAGEMENT

WHAT?
Careful management of soils is an important aspect of sustainable use of materials that are being stripped, whether for sale off-site or for retaining on-site for later landscape preparation.

Without a proper soil management strategy there is the risk of losing, damaging or contaminating valuable soil resources.

WHY?
- **Avoid environmental harm:** Inadequate planning will increase the risk of good soil resources becoming damaged or sterilised.
- **Reduce costs:** Failure to use on-site soil materials to their maximum potential might necessitate costly import of replacement soils.

DO
- ✓ Develop a soil management strategy well before works commence on site.
- ✓ Ensure that there is sufficient space to stockpile all soils that are to remain on site.
- ✓ Investigate beneficial off-site uses for all soil materials that are surplus to requirement.
- ✓ Plan site works so that soil stripping and replacement can be undertaken in summer months.
- ✓ Identify a person responsible for supervising soil management.
- ✓ Clearly mark out all haul routes and areas to be protected from construction activity.

DON’T
- ✗ Leave soil management to chance.
- ✗ Make haul routes wider than necessary to accommodate two passing vehicles.
- ✗ Allow indiscriminate vehicle movements across soils to be reused.
TOOLBOX TALK 3

STRIPPING TOPSOIL

WHAT?
Topsoil is a finite resource that is essential for creating new landscapes or gardens and supporting the growth of trees, grass or other vegetation within them. It is very easily damaged by heavy machinery excavating it or running over it, so needs very careful handling when being stripped.

WHY?
- Avoid environmental harm: Topsoil that is reused beneficially reduces the impacts of needing to dispose of it to landfill.
- Avoid environmental harm and prosecution: Soil that becomes over compacted will not absorb rainwater, increasing the risk of muddy water running off into watercourses and causing pollution and breaching discharge consents.
- Reduce costs: Good topsoil can be expensive to import into a site. Topsoil that becomes mixed with subsoil or wastes will have to be sent to tip and incur landfill tax.

DO
- Ensure that the method statement has been properly explained
- Make sure that vegetation has been killed or cleared before stripping starts
- Strip topsoil in the driest condition possible.
- Keep stripping and haul vehicles to designated routes and wheeled vehicles off topsoil.

DON'T
- Strip soils during or after heavy rainfall or when there are pools of water on the surface.
- Strip topsoil too deeply so that subsoil becomes incorporated, thereby reducing fertility.
- Remove topsoil from below the spread of trees to be retained.
- Drive vehicles unnecessarily over topsoil.
TOOLBOX TALK 4

STRIPPING SUBSOIL

WHAT?
The subsoil is an essential component of most soils, transmitting rainfall to deeper layers or watercourses and enabling trees, shrubs and grass to root deeply and access additional moisture in summer.

Subsoil that becomes over-compacted through construction machinery running over it is the major cause of landscape failure because of waterlogging above it in winter and restriction to roots in summer.

A loamy subsoil can be blended with compost or other organic matter to manufacture a topsoil substitute on sites that are lacking topsoil.

WHY?
- **Avoid environmental harm and prosecution**: Soil that becomes overcompacted will not absorb rainwater, increasing the risk of muddy water running off into watercourses and causing pollution and breaching discharge consents.
- **Reduce costs**: Maintaining the subsoil in good condition will prevent the need for remedial works, such as the installation of drains, in areas to be planted or landscaped.
- **Reduce costs**: Using subsoil and organic matter to manufacture a topsoil substitute avoids costly import of natural topsoil into brownfield sites.

DO
- ✓ Ensure that the method statement has been properly explained
- ✓ Strip subsoil in the driest condition possible.
- ✓ Use tracked equipment wherever possible to reduce compaction.
- ✓ Keep stripping and haul vehicles to designated routes and wheeled vehicles off subsoil.

DON'T
- ✗ Strip soils during or after heavy rainfall or when there are pools of water on the surface.
- ✗ Strip together subsoils of different quality and composition (e.g. clay with sand).
- ✗ Drive vehicles over subsoil.
TOOLBOX TALK 5

STOCKPILING SOIL

WHAT?
Soils that are stripped for later re-use have to be temporarily stockpiled on site.

If stockpiling is done incorrectly the physical condition of the soil can be damaged irreversibly, resulting in a loss of a valuable resource.

If soil, spoil and waste become mixed by mismanagement the soil resource will become unusable.

WHY?

- **Avoid environmental harm and prosecution:** Stockpiles that are too steep or that are left unvegetated risk erosion with muddy water running off into watercourses, causing pollution and breaching discharge consents.
- **Contribute to site safety:** Stockpiles badly constructed or badly sited can be a health and safety risk.
- **Reduce costs:** Maintaining stockpiled soil in good condition will benefit areas to be planted or landscaped, avoiding the need for remedial works.
- **Reduce costs:** Keeping topsoil and subsoil separate will keep them usable and avoid tipping charges.

DO

- ✓ Ensure that the method statement has been properly explained.
- ✓ Remove vegetation and waste materials from storage areas before forming stockpiles.
- ✓ Stockpile soil in the driest condition possible.
- ✓ Use tracked equipment wherever possible to reduce compaction.
- ✓ Protect stockpiles from erosion by seeding or covering them.
- ✓ Use clear signage to identify stockpile contents.

DON’T

- X Stockpile soils of different quality and composition together, especially topsoil and subsoil.
- X Locate stockpiles close to retained trees, drains, watercourses, excavations or the site of future excavations.
- X Stockpile subsoil or waste materials on top of topsoil.
- X Steepen stockpile sides beyond a slope of 1 in 1.75 (30°) in order to reduce the risk of erosion.
- X Allow vehicles to run over stockpiles except during construction of them.
TOOLBOX TALK 6

SPREADING SOIL

WHAT?
It is essential to provide a structured, uncompacted and well-aerated soil profile for the successful establishment and subsequent growth of vegetation and to absorb excess rain.

However, where heavy machinery has to handle large volumes of soil, soil structure can easily be destroyed by over-compaction thereby compromising soil functions.

WHY?
- **Avoid environmental harm:** Soils replaced too compact cannot absorb rainfall. This leads to increased run-off and flood risk and risks causing pollution and breaching discharge consents.
- **Reduce costs:** Over-compacted soil will require remedial treatment, increasing project costs.

<table>
<thead>
<tr>
<th>DO</th>
<th>DON’T</th>
</tr>
</thead>
</table>
| ✓ Ensure that the method statement has been properly explained.
✓ Handle and place soil in the driest condition possible.
✓ Use tracked equipment wherever possible to reduce compaction.
✓ Decompress subsoil before placing topsoil.
✓ Fully re-aerate anaerobic topsoil before planting, turving or seeding.
✓ Ensure that the physical condition of the entire soil profile (topsoil and subsoil) will promote sufficient aeration, drainage and root growth. | ✗ Place or cultivate soils during or after heavy rainfall or when soils are wet and plastic.
✗ Take construction machinery over topsoil that has been placed.
✗ Place topsoil too deeply - ‘more’ is not necessarily ‘better’.
✗ Plant into wet anaerobic topsoil. |
SOURCING TOPSOIL

WHAT?
On many sites topsoil is either completely absent or there is insufficient quantity to meet landscaping needs.

On sites that have adequate topsoil when site preparation commences, space constraints might necessitate sale or disposal off-site and importation of new topsoil or topsoil substitute later in the project.

Beware! The term ‘topsoil’ can mean a whole variety of things, depending on whether you are buying, selling, hauling, using, specifying or testing the material.

WHY?
- **Protect natural resources:** Finding a use for natural topsoil that is surplus to requirements on another site helps to preserve natural resources.
- **Avoid environmental harm:** Using a topsoil substitute of verified quality helps recycling of organic wastes, such as green compost, and reduces the quantity going to landfill.
- **Contribute to health and safety:** Soil that is contaminated and/or contains ‘sharps’ is a risk to site workers, landscape contractors and the eventual occupants of the development.

DO
- ✔ Fully investigate on-site resources before considering a source of topsoil from outside the site.
- ✔ Use a reputable supplier.
- ✔ Establish through appropriate analysis, that the topsoil is suitable for the intended purpose.
- ✔ Ensure that all the correct waste Regulations have been met, and if necessary, the correct Environmental Permit or exemption(s) has been obtained before soils are imported.

DON’T
- ✗ Accept non-documented or unverified loads of topsoil.
- ✗ Use a standard specification for all plantings as different species and land uses have different topsoil requirements.
- ✗ Accept topsoil that is too cloddy or wet or that contains visible evidence of plastics, concrete, etc.
TOOLBOX TALK 8

MANUFACTURING TOPSOIL

WHAT?

On many sites topsoil is either completely absent or there is insufficient quantity to meet landscaping needs.

Manufacturing topsoil on site using discard subsoil or substrate material mixed with imported organic matter can sometimes be a better solution than trying to source suitable and consistent natural topsoil.

Mixing can either be carried out at central site location using screening machines or excavator buckets or by spreading organic matter on the subsoil surface and cultivating in.

Imported organic ameliorants may be subject to waste management licensing or will come under a Waste Quality Protocol.

WHY?

- **Protect natural resources**: Finding a use for suitable subsoil helps to preserve natural resources.
- **Avoid environmental harm**: Using recycled organic matter such as composts or biosolids helps to reduce the waste stream going to landfill.
- **Reduce costs**: Reusing surplus subsoil or mineral material avoids sending it to landfill and the considerable costs involved.

DO

- ✓ Determine if there is shortfall of site topsoil at an early stage in the project.
- ✓ Determine whether topsoil manufacture is feasible by considering the quality of surplus subsoil, programme, space and landscape requirements.
- ✓ Ensure that all imported soil ameliorants are in accordance with Waste Regulations.

DON’T

- X Wait until there is a stockpile of surplus subsoil before considering topsoil manufacture.
TOOLBOX TALK 9

SOIL AFTERCARE

WHAT?
Even if soils are handled carefully there can be damage to their structure that is not repaired by initial cultivation after spreading.

Structurally-weakened soils tend to settle and self-compact after placement, consequently suffering from waterlogging and anaerobism (oxygen-deficiency).

Even in uncompacted situations it can take between 1 and 3 years for the soil structure to stabilise and provide the necessary drainage and aeration for plant roots and the soil's fauna and flora to function properly.

WHY?
- **Avoid environmental harm**: Compact, degraded, soils increase the risk of ponding and flooding.
- **Improve marketability of the site**: Waterlogging and anaerobism are the most common soil-related causes for plant failure on landscaping schemes, detracting from the appearance of a site.
- **Reduce costs**: Failed landscaping schemes can be expensive to remedy.

DO
- ✔ Ensure that soil health as well as plant health is closely monitored during the aftercare period.
- ✔ Correct deficiencies as soon as they are detected.

DON’T
- ❌ Rely on aftercare as an alternative to good soil management – careful soil handling, storage and placement will save on aftercare costs and result in long-term benefits to the development.
- ❌ Assume that soils will function adequately immediately after planting.
TOOLBOX TALK 10

USE OF SURPLUS SOIL

WHAT?

One hectare of topsoil, the most productive soil layer, can contain up to 5 tonnes of living organisms but because it can take more than 500 years to form 2 cm, topsoil is in practical terms non-renewable.

In many localities particularly urban areas, uncontaminated topsoil is in short supply for creating gardens, parks, roadside verges and landscaping schemes.

There will sometimes also be off-site uses for subsoil in restoring landfills, spoil tips, etc.

WHY?

- **Protect natural resources:** Soil is a finite resource which provides many functions apart from supporting vegetation.
- **Reduce costs:** Finding sustainable off-site uses will save the costs of taking surplus soil to tip or accommodating it on site.

DO

- ✔ Calculate soil surpluses at an early stage in the project.
- ✔ Analyse topsoil according to BS3882:2007 to assist in finding a market for it.
- ✔ Make use of contractor contacts, waste recycling networks and local authority knowledge to seek sustainable off-site uses.

DON’T

- ❌ Bury topsoil deeply on site unless there are no sustainable off-site uses.
- ❌ Forget to ensure that all off-site uses are in accordance with current waste legislation e.g. Environmental Permit exemptions.
PRE-CONSTRUCTION PLANNING

Has a detailed soil resources survey been undertaken?
- Yes: Commission survey from a suitably qualified and experienced soil scientist
- No: Has a Soil Resource Plan been prepared?
 - Yes: Design for sustainable use of soil, set targets and prepare specifications
 - No: Prepare plan that shows areas to be disturbed, methods, thickness of topsoil/subsoil to be stripped and location of stockpiles

SOIL MANAGEMENT DURING CONSTRUCTION

Has the Soil Resource Plan been communicated and explained to the site supervisor and earthworks contractors?
- Yes: Ensure that all relevant employees and contractors are briefed and method statements are produced for each operation
- No: Have method statements for the various operations been described to machine operators?
 - Yes: Is there a need for soils to be stored on site in stockpiles?
 - No: Are there excess or insufficient uncontaminated soil resources for the planned uses of the site?
 - Too much: Investigate sources of soil of suitable characteristics for the planned use. Ensure that soil is from reliable source and free from contaminants, and accompanied by necessary Permit or exemption. Only dispose of at landfill as a last resort.
 - Too little: Find sustainable off-site use for all surpluses, and apply for any necessary Environmental Permit exemptions. Only dispose of at landfill as a last resort.

Ensure different soils are stored separately in carefully formed stockpiles. Note soil types in stockpiles on a plan, seed if necessary, maintain and prevent trafficking by machinery.

LANDSCAPE, HABITAT OR GARDEN CREATION

Has the area to receive soils been protected from vehicle movements or, if not, de-compacted?
- Yes: Ensure that receiving substrate is loosened by ripping or cultivation when dry
- No: If topsoil is required, is it of the required fertility, pH and texture for the planned vegetation?
 - Yes: Carefully spread soil to the required thickness (150-400mm), according to type of vegetation to be established, avoiding movement of heavy machinery over freshly spread soil. Cultivate surface soils, remove any stone or hard objects >50mm and undertake quality control sampling.
OPERATION CHECKLISTS

1. Pre-development soil audit

<table>
<thead>
<tr>
<th>Item</th>
<th>X</th>
<th>✓</th>
</tr>
</thead>
<tbody>
<tr>
<td>Have uncontaminated soil resources been identified on site?</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Has a detailed Soil Resource Survey of them been carried out by a suitably qualified soil scientist?</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Has a detailed report of the results been placed on file?</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Has the report been used to identify soil surpluses and soil deficits?</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Has space been identified for storage of any soils to be retained on-site for re-use?</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

2. Soil Resource Planning

<table>
<thead>
<tr>
<th>Item</th>
<th>X</th>
<th>✓</th>
</tr>
</thead>
<tbody>
<tr>
<td>Has a detailed Soil Resource Plan been produced?</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Has sufficient space been identified to store soils to be retained on site?</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Have volumes of each soil type been calculated?</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Has the type(s) of re-use been identified for each soil type to be retained?</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Have measures been put in place to protect soils to be stored or left in place from vehicle traffic?</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Has a qualified person been identified to supervise soil management?</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

3. Topsoil stripping

<table>
<thead>
<tr>
<th>Item</th>
<th>X</th>
<th>✓</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is uncontaminated topsoil to be stripped from the site for re-use?</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Has surface vegetation been removed or killed?</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Has the overall soil stripping plan been developed and communicated to machine operators?</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Has topsoil stripping depth been defined and communicated to machine operators?</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Has the appropriate equipment been selected for stripping the topsoil?</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Does the working plan avoid machines travelling over topsoils to be re-used?</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Have stripping activities been scheduled to avoid wet conditions?</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Is there provision to stand-down equipment if heavy rain occurs during topsoil stripping?</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
4. Subsoil stripping

<table>
<thead>
<tr>
<th>Question</th>
<th>✓</th>
<th>✗</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is uncontaminated subsoil to be stripped from the site for re-use?</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Has the overall soil stripping plan been developed and communicated to machine operators?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Has subsoil stripping depth been defined and communicated to machine operators?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Has the appropriate equipment been selected for stripping the soil?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does the working plan avoid machines travelling over subsoils to be re-used?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Have stripping activities been scheduled to avoid wet conditions?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is there provision to stand-down equipment if heavy rain occurs during topsoil stripping?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Soil stockpiling

<table>
<thead>
<tr>
<th>Question</th>
<th>✓</th>
<th>✗</th>
</tr>
</thead>
<tbody>
<tr>
<td>Has sufficient space been identified to store soils to be retained on site?</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Has topsoil been removed from areas earmarked for storing subsoil or other materials?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are stockpiles located away from retained trees, current or future excavations, voids or watercourses?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are stockpiles likely to be relocated before the contents are re-used?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Have stockpile construction methods been (or will they be) adjusted to deal with wet soils?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Have stockpile side slopes and top been tracked down for stability and weather proofing?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are stockpiles to be seeded with grass?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is there a maintenance plan in place for management of stockpile vegetation?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Have the contents of each stockpile been accurately recorded on a plan and on signs?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. Soil placement

<table>
<thead>
<tr>
<th>Question</th>
<th>✓</th>
<th>✗</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are topsoils or subsoils to be spread?</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Has the overall soil placement plan been developed and communicated to machine operators?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Has the spreading thickness for each layer been defined and marked out using level boards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Has the appropriate equipment been selected for decompacting subsoil and spreading topsoil?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Have appropriate work methods been defined to avoid machinery traffic over newly placed soil?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Have spreading activities been scheduled to avoid wet conditions?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is there provision to stand-down equipment if heavy rain occurs during soil spreading?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7. Sourcing and importing soil

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is soil to be imported to site?</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Have the soil composition requirements been properly defined for the different planned uses?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Has the source of the imported soils been verified?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is the soil natural (e.g. stripped from a field or stockpiled from a field)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is the soil manufactured or blended from one or more components?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do imported topsoils come with a verified analysis to BS3882:2007?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Have all waste legislation requirements been met for all imported soil?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is there an appropriate quality control and inspection strategy for individual loads?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. Topsoil manufacture

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is topsoil to be manufactured on site?</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Has the feasibility been assessed and source components been analysed?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Have all waste legislation requirements been met for all imported components?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Has a mixing method statement been prepared for producing soils of each composition required?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9. Soil aftercare

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is there a plan in place to check soil and vegetation health after spreading?</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Are there provisions in the landscape maintenance contract for remediation of ongoing soil deficiencies such as soil compaction?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Have all waste legislation requirements been met?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Uses for surplus soil

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are there surplus resources of clean soil on site?</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Have the soil needs of nearby developments or reclamations been investigated?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Has the surplus soil been advertised on soil or waste exchange networks?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are all waste legislation requirements being met for soils to be exported?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>