GOOD PRACTICE GUIDE FOR HANDLING SOILS

Sheet 10:

Building Soil Storage Mounds with Self-Propelled Earth Scrapers

Issued by the Farming and Rural Conservation Agency, Cambridge

April 2000

© MAFF & Crown Copyright
v04/00
MAFF FOREWORD

Standards of restoration of minerals and waste sites have steadily improved in recent years, with operators increasingly aware of their environmental responsibilities. The industry is putting forward more imaginative restoration concepts to a variety of afteruses, and is more aware than ever that it will be judged on the standard of that restoration, and the sustainability of the development.

Sustainable mineral development means balancing economic, environmental and social needs, whilst using resources wisely. The UK Strategy for Sustainable Development recognises the importance of safeguarding agricultural land to meet the needs of future generations, and minimising the loss of soils to new development*

Improved restoration standards have sometimes enabled planning permission to be given for best and most versatile agricultural land to be worked for minerals, on the basis that it can be restored in a way that safeguards its long-term agricultural potential**. Inherent in these high standards of restoration is the requirement to handle soils in such a way that damage to their structure is minimised. It is the aim of this Guide to provide comprehensive advice on soil handling “Good Practice” to operators, soil moving contractors, consultants and planning authorities.

The Guide is in the form of 15 Sheets giving advice on soil stripping, the forming and taking down of soil storage mounds, and soil replacement operations using excavators, earth scrapers or bulldozers. There are also four Guidance Sheets on remedial works involving the removal of stones and damaging materials, and decompaction during the replacement operations.

This document should be cited as MAFF (2000), Good Practice Guide for Handling Soils (version 04/00). FRCA, Cambridge.

Any views expressed in the guidance are those of the consultant and do not necessarily represent the view of the Ministry of Agriculture, Fisheries and Food.

*(DETR, A Better Quality of Life, May 1999, paragraphs 6.66 and 8.50)

**MPG7 (November 1996, paragraph 3).

Acknowledgements

The Guide was written and prepared by Dr R N Humphries of Humphries Rowell Associates, Charnwood House, Loughborough, LE11 3NP, UK. The art work was by R Shenton of H J Banks & Co.
Sheet 10 Building Soil Storage Mounds with Self-Propelled Earth Scrapers

The purpose of this Guidance Sheet is to provide a model method for best practice where self-propelled earth scrapers are used to build soil storage mounds. This Guidance Sheet comprises 4 pages of text, 1 figure and a user response form.

The model may need to be modified according to site conditions or requirements of the Planning Authority. Where this is the case, deviation from the model should be recorded with reasons. The guidance does not specify the type, size or model of equipment, but this should have been agreed as part of the planning conditions or as a reserved matter. The machines should be of a kind which will cause the minimum compaction whilst being operationally efficient, and must be well maintained at all times.

Persons involved in the handling of soils, overburden etc., and in the construction or removal of mounds or tips, must comply with the Health and Safety at Work Etc. Act 1974 and its relevant statutory provisions, and in particular those aspects which relate to the construction and removal of tips, mounds and similar structures. This requirement takes preference over any suggested practice in the Sheets.

The user of these guidelines is solely responsible for all liabilities that might arise. No liabilities are accepted for any losses of any kind arising from the use of this guidance.

This soil handling method uses a self-propelled ‘box’ earth scraper to transport and place the soils into storage. An auxiliary bulldozer will be required to assist in the traction of the scraper unit in the building of the soil mound, and to shape the mound and maintain haul routes.

The self-propelled earth scraper soil handling method in particular can significantly affect the agricultural quality of the restoration through severe soil deformation.
(compression and smearing). This is primarily caused through unavoidable repeated trafficking over the soils during the lifting and the building and excavating mounds, and on replacement; the effects of which increases with increasing soil wetness. Consequently, for satisfactory restoration there is a need for effective decompaction treatment during the replacement operation (see Sheet 19). Decompaction treatment is an obligate requirement when soils are handled by self-propelled earth scrapers.

There are a number of key operational points during soil mound construction to minimise the degree and extent of severe soil deformation, and to aid the effective treatment of the compaction on replacement:

(i) To minimise compaction:

- strip in advance the soil to basal layer along haul routes and the operational footprint of the storage mound.

- the adoption of an ‘in-out’ only at the end of the mound minimises trafficking.

- the soils are to be released in as thick layer as possible whilst maintaining their operational efficiency, using an auxiliary bulldozer to push if necessary.

- the machines are to only work when ground or soil surface conditions enable their maximum operating efficiency.

(ii) To minimise the wetting of soils:

- site soil mounds in dry locations and protect from run-off from adjacent areas. Drain if a wet location.

- raise the soil mound to maximum height progressively along the axis of the mound and shape the mound as it is being built to shed water and whenever stripping is suspended.
measures are required to protect the face of the soil layer from ponding of water and maintain the basal layer in a condition capable of supporting the earth scrapers.

The Storage Operation

10.1 The mounds should be sited on dry ground and not in hollows and should not disrupt local surface drainage. Where necessary mounds should be protected from run-off/ponding by a cut-off ditch which is linked to appropriate water discharge facilities. Where the storage mound is in a hollow due to the removal of surface soils, measures should be undertaken to ensure that water is not able to pond within the storage area.

10.2 All machines must be in a safe and efficient working condition at all times. The machines are to only work when ground conditions enable their maximum operating efficiency. The operation is to be suspended before traction becomes a problem or the integrity of the basal layer and haul routes fails; haul routes must be maintained.

10.3 The operation should follow a detailed soil stripping/storage plan showing soil units to be stripped and stored, haul routes and the phasing of vehicle movements. Haul routes are required at both ends of the mound and along one side when building with earth scrapers; these should be retained for the excavation process. The soil units should be defined within the site with information to distinguish types and layers, and ranges of thickness. Detailed daily records should be kept of operations undertaken, and site and soil conditions.
10.4 Remove in advance topsoil and subsoil to overburden/basal layer from the haul routes and from the foot print of the storage mound and 'operating area' by adopting practices outlined in Sheet 9. The soils removed from the haul routes and foot print of the storage mounds should be stored in their respective mounds.

10.5 The scrapers must travel only along the haul route and in the operational area, and enter and leave the storage mound footprint by the ‘in-out’ designated routes. The soil should be released in as thick wedges as possible (300mm) over the shortest distance (starting at the far end of the mound) whilst maintaining operational efficiency of the earth scrapers (using the auxiliary bulldozer to push if necessary). The placement of soil should start at one side of the storage area building upwards and laterally along the axis of the mound; with the scraper travelling in the same tracks where possible (Figure 10.1).

10.6 Any exposed edges/surfaces should be shaped using a bulldozer blade on the onset of rain during the day. All surfaces should be shaped to shed water at the end of the day. The final outer surface should be progressively shaped using a bulldozer blade to promote the shedding of rain.

10.7 Work should stop in wet conditions with measures undertaken to prevent ponding at the base of the mound and on the basal layer. At the start of each day ensure there is no ponding on the basal layer and operating areas.
Figure 10.1 Storage mound construction with self propelled scrapers: Single and multi tier mounds
FEEDBACK

It would be most helpful in assessing access to this Guidance, the use made of it and its further development if the following could be completed and returned to the FRCA:

Organisation
Contact Name
Telephone/e-mail
Date

Is the Guidance to be used generally or for specific site/works?
General
Specific site

If specific site – please identify
Name
County
Country

How was the Guidance obtained?
Internet
FRCA
Other

If other – please identify source
Source of Guidance

When was the Guidance obtained?
Month
Year

Please provide any helpful comment/experience which may benefit the Guidance (use additional sheets if necessary)

Please copy and return to: M Stephen, Farming and Rural Conservation Agency, Rural Development Team, Government Buildings, Block C, Brooklands Avenue, Cambridge CB2 2BL, UK