GOOD PRACTICE GUIDE FOR HANDLING SOILS

Sheet 12:

Soil Replacement with Self-Propelled Earth Scrapers

Issued by the Farming and Rural Conservation Agency, Cambridge

April 2000

© MAFF & Crown Copyright
v04/00
MAFF FOREWORD

Standards of restoration of minerals and waste sites have steadily improved in recent years, with operators increasingly aware of their environmental responsibilities. The industry is putting forward more imaginative restoration concepts to a variety of afteruses, and is more aware than ever that it will be judged on the standard of that restoration, and the sustainability of the development.

Sustainable mineral development means balancing economic, environmental and social needs, whilst using resources wisely. The UK Strategy for Sustainable Development recognises the importance of safeguarding agricultural land to meet the needs of future generations, and minimising the loss of soils to new development*. Improved restoration standards have sometimes enabled planning permission to be given for best and most versatile agricultural land to be worked for minerals, on the basis that it can be restored in a way that safeguards its long-term agricultural potential**. Inherent in these high standards of restoration is the requirement to handle soils in such a way that damage to their structure is minimised. It is the aim of this Guide to provide comprehensive advice on soil handling “Good Practice” to operators, soil moving contractors, consultants and planning authorities.

The Guide is in the form of 15 Sheets giving advice on soil stripping, the forming and taking down of soil storage mounds, and soil replacement operations using excavators, earth scrapers or bulldozers. There are also four Guidance Sheets on remedial works involving the removal of stones and damaging materials, and decompaction during the replacement operations.

This document should be cited as MAFF (2000), Good Practice Guide for Handling Soils (version 04/00). FRCA, Cambridge.

Any views expressed in the guidance are those of the consultant and do not necessarily represent the view of the Ministry of Agriculture, Fisheries and Food.

* (DETR, A Better Quality of Life, May 1999, paragraphs 6.66 and 8.50)
** MPG7 (November 1996, paragraph 3).

Acknowledgements

The Guide was written and prepared by Dr R N Humphries of Humphries Rowell Associates, Charnwood House, Loughborough, LE11 3NP, UK. The art work was by R Shenton of H J Banks & Co.
SHEET 12 SOIL REPLACEMENT WITH SELF-PROPELLED EARTH
SCRAPERS

The purpose of this Guidance Sheet is to provide a model method for best practice
where self-propelled earth scrapers are used to replace soils. This Guidance Sheet
comprises 6 pages of text, 2 figures and a user response form.

The model may need to be modified according to site conditions or requirements of
the Planning Authority. Where this is the case, deviation from the model should be
recorded with reasons. The guidance does not specify the type, size or model of
equipment, but this should have been agreed as part of the planning conditions or as a
reserved matter. The machines should be of a kind which will cause the minimum
compaction whilst being operationally efficient, and must be well maintained at all
times.

Persons involved in the handling of soils, overburden etc., and in the construction or
removal of mounds or tips, must comply with the Health and Safety at Work Etc. Act
1974 and its relevant statutory provisions, and in particular those aspects which relate
to the construction and removal of tips, mounds and similar structures. This
requirement takes preference over any suggested practice in the Sheets.

The user of these guidelines is solely responsible for all liabilities that might arise.
No liabilities are accepted for any losses of any kind arising from the use of this
guidance.

This soil handling method uses a self-propelled ‘box’ earth scraper to transport and
lay the soils.

The self-propelled earth scraper soil handling method in particular can significantly
affect the agricultural quality of the restoration through severe soil deformation
(compression and smearing). This is primarily caused through unavoidable repeated
trafficking over the soils during the lifting and the building and excavating mounds, and on replacement; the effects of which increases with increasing soil wetness. Consequently, for satisfactory restoration there is a need for effective decompaction treatment during the replacement operation (see Sheet 19). Decompaction treatment is an obligate requirement when soils are handled by self-propelled earth scrapers.

The early installation of under drainage is strongly recommended. Where required this should either be undertaken sequentially during the replacement of the soils or in the early aftercare period. Until drains are installed it is recommended that the restored land is sown and managed as grassland.

There are a number of key operational points to minimise the degree and extent of severe soil deformation and for the effective treatment of the compaction:

(i) To minimise compaction and optimise decompaction:

- the adoption of an ‘in-out’ only at the end of strips minimises trafficking.

- the machines are to only work when ground conditions enable their maximum operating efficiency.

- the soils are to be relaid in as thick layer as possible whilst maintaining the operational efficiency of the scraper, using an auxiliary bulldozer to push if necessary.

- effective decompaction on soil replacement is a requisite of the earth scraper handling method (see Sheet 19).

- the soil layers should have a moisture content 5% or greater below their lower plastic limit*. Moisture content should be assessed by oven drying* of samples taken from representative locations and mid/lower points of each soil horizon. [*Or as required in the planning conditions.]
(ii) To minimise soil rewetting and for effective decompaction:

- the bed/strip system provides a basis to regulate the exposure of lower soil layers to periods of rain and a means of maintaining soil moisture contents. The soil profile within the active strip should be replaced to the topsoil layer before rainfall occurs and before replacement is suspended.

- measures are required to protect the face of the soil layer from ponding of water and maintain the basal layer in a condition capable of supporting the earth scrapers.

- the area to be replaced is to be protected from in-flow of water, ponding etc. Wet sites should be drained in advance.

The Replacement Operation

12.1 The area to be restored is to be protected from in-flow of water, ponding etc. Wet sites must be drained in advance. Before the operation starts the basal layer should be to level and clean.

12.2 Prior to commencing operations a Meteorological Office forecast should be obtained which gives reasonable confidence of soil replacement proceeding without interruptions from rainfall events. If significant rainfall is forecast or occurs during operations, the replacement must be suspended, and where the soil profile has been started it should be replaced to topsoil level. Replacement must not restart unless the weather is expected to be dry for at least a full day.
12.3 All machines must be in a safe and efficient working condition at all times. The machines are to only work when ground conditions enable their maximum operating efficiency. The operation should only be carried out when the basal layer supports the machinery without ruts or is capable of repair/maintenance. The operation is to be suspended before traction becomes a problem or the integrity of the basal layer and haul routes fails. All haul routes should be maintained.

12.4 The operation should follow a detailed replacement plan showing soil units to be replaced, haul routes and the phasing of vehicle movements. The soil units should be defined on the site with information to distinguish types and layers, and thickness. Detailed daily records should be kept of operations undertaken (including the removal of stones and other damaging materials, and the results of any assessment of the need for additional decompaction and the effectiveness of decompaction work undertaken), and site and soil conditions.

12.5 The scrapers must travel only along the haul route and the basal/formation layer operational area, and enter and leave the strips receiving soil by the ‘in-out’ designated ends. When ever possible the scrapers should travel in the same tracks when laying soils as in previous passes.

12.6 The soil layers above the base/formation layer are to be replaced in sequential strips with the subsoil layer(s) to be replaced first, followed by the topsoil layer; each layer replaced to the specified thickness. The next strip is not to be started until the current strip is completed. This is often referred to as the 'bed or strip system'. The system involves the progressive sequential laying of the materials in strips across the area to be restored (Figure 12.1).

12.7 The initial strip width and axis should be demarcated. Strip widths should be up to two machine widths (about 10m).
12.8 Start at the entry end of the strip with lowest soil layer (subsoil). Release the soil slowly and maximise the thickness of soil laid (eg 300mm) over the shortest distance possible, whilst maintaining their operational efficiency. The strip is to be completed and the soil placed to the required thickness by repeating the process progressively along the strip (Figure 12.1). Some final grading of the completed strip might be necessary. This should be minimised and carried out with the scraper or bulldozer, but not a grader.

12.9 Level boards and soil pits should be used to verify soil thickness in each strip and overall levels. Allowances (ie. bulking factor) should be made for any ‘heave’ that may take place when the replaced soil is decompacted.

12.10 The ripping strategy needs to be determined at the planning of operations and must take into account the thickness of soil layers, depth of compaction and the effective depth of the ripping tool (Sheet 19), and the need for the removal of stones and other damaging materials (Sheet 17). These should be specified in the soil replacement plan. Decompaction and removal of materials should only take place when each specified soil layer is completed along the strip, and the work must be completed before the next layer of soil is placed.

12.11 On completion of the lowest layer (subsoil), including decompaction and removal of materials, repeat the process sequentially spreading the next layers (subsoil/topsoil) (Figure 12.2).

12.12 On completion of the topsoil layer, the above processes should be repeated for the next strips until the area to be restored is completed. Before the operation starts the basal layer should be to level and clean.

12.13 At the end of each day the current strip must be complete if rain is forecast. If during a day it is evident that a full strip cannot be completed, then only start part of a strip; this too must be completed.
12.14 At the end of each day, or during the day if interrupted by rain, make provisions to protect base of restored strip from ponding/runoff by sumps and grips, and also clean and level the basal layer. At the start of each day ensure there is no ponding in the current strip or operating areas, and the basal layer is to level with no ruts.

Operational Variation

12.15 If the basal/formation layer is to be decompacted, before any soil material is placed, each strip is to be firstly decompacted before the subsoil layer is replaced. Decompaction is dealt with in Sheet 19, which covers strategies, equipment and methods of operation. The basal layer must only be decompacted in the strip required for soil replacement, and must be prepared on the day of soil placement. During this process it may be necessary to use Sheet 17 for the removal of stones or damaging materials from the basal layer.
Figure 12.1 Soil replacement with self propelled scrapers: Sub soil
Figure 12.2 Soil replacement with self propelled scrapers:
Top soil
SHEET 12
Version: 04/00

FEEDBACK

It would be most helpful in assessing access to this Guidance, the use made of it and its further development if the following could be completed and returned to the FRCA:

<table>
<thead>
<tr>
<th>Organisation</th>
<th>Contact Name</th>
<th>Telephone/e-mail</th>
<th>Date</th>
</tr>
</thead>
</table>

Is the Guidance to be used generally or for specific site/works?
- General
- Specific site

If specific site – please identify
- Name
- County
- Country

How was the Guidance obtained?
- Internet
- FRCA
- Other

If other – please identify source
- Source of Guidance

When was the Guidance obtained?
- Month
- Year

Please provide any helpful comment/experience which may benefit the Guidance (use additional sheets if necessary)

Please copy and return to: M Stephen, Farming and Rural Conservation Agency, Rural Development Team, Government Buildings, Block C, Brooklands Avenue, Cambridge CB2 2BL, UK