1. Introduction

1.1 This volume is concerned with the response to BSE as a disease threatening animal health. The response to BSE as a disease threatening human health is considered in vol. 6: *Human Health, 1989–96*.

1.2 The division into these two topics is designed to make a complicated story easier to follow. It is, however, arbitrary and to a degree artificial. The best way to protect humans from any risk that there might be of transmission of BSE was to eradicate the disease in cattle, and prevent its transmission to any other animals which might prove a staging post in ultimate transmission to humans. Thus the ruminant feed ban (RFB) and the animal Specified Bovine Offal (SBO) ban, which were primarily animal health measures, had important implications for human health. Nonetheless their place is plainly in this volume, and it is to those measures that this volume is largely directed.

1.3 The slaughter and compensation scheme had potential benefits for animals. There was a possible benefit to ruminants, as dangers from accidental or deliberate contamination of ruminant feed would be reduced (to the extent that they might otherwise arise from carcasses of clinical cases). There were also potential benefits for non-ruminants if it should transpire that BSE were transmissible to them. Nonetheless, the primary reason for introducing the slaughter and compensation scheme was to take diseased animals out of the human food chain. For that reason we have dealt with slaughter and compensation in vol. 6: *Human Health, 1989–96*.

1.4 A particular problem facing those who had to address the risks posed by BSE to both human and animal health was the lengthy incubation period of this type of disease. In cattle approximately five years elapse on average between infection by the oral route and the emergence of clinical symptoms. Normally those tackling an infectious animal disease will quickly discover if their measures are inadequate by monitoring the incidence of the disease. In such circumstances, to use a metaphor of Mr Kevin Taylor, one could adopt an approach of putting a dam in place and then standing back to see where the leaks occurred, before taking steps to staunch them.¹

1.5 Such an approach was not satisfactory for BSE, for the leaks would only become apparent years after the precautionary measures. It was particularly important to give rigorous consideration to every aspect of the design of the dam, to ensure that leakage could not occur insofar as this was possible.

1.6 The first dam to be built to protect cattle and other ruminants from the risk of transmission of BSE was the RFB. We have seen in vol. 3: *The Early Years 1986–88* how that came to be put in place on 18 July 1988. The ruminant content of meat and bone meal (MBM) incorporated in cattle feed had been identified as the source of infection of BSE. The RFB aimed to prevent any of this material from being incorporated in ruminant feed. Had the dam been watertight, oral transmission of BSE would have been cut off at a stroke.

¹ T122 p. 34
1.7 On 21 September 1990 a second dam was put in place, upstream of the RFB. This was the animal SBO ban. It was not designed to protect ruminant animals but to protect non-ruminant animals, whose diet included ruminant protein. It sought to do so by making it illegal to include in any animal feed those bovine tissues most likely to be infective if derived from an animal incubating BSE. The manner in which the ban was intended to operate was by diverting at source the SBOs, when severed from the carcass, keeping them separate from material destined for animal feed, and ensuring that they were disposed of as waste.

1.8 Had this dam been watertight, ruminants would have received double protection. No ruminant protein should, in theory, have been included in their feed. If, however, some leaked into it despite the RFB, it should have been innocuous because it would have been free of SBOs.

1.9 In this volume we see how it was not until 1994 that it became clear to MAFF officials that both dams were leaking. SBOs were getting into MBM that was used to make feed for non-ruminants. Some of that feed was, in its turn, getting into feed for ruminants. The extent of the leakage only gradually became apparent as the number of victims of BSE born after the introduction of the animal SBO ban steadily grew from a trickle to a flood.

1.10 In Chapters 2 we consider steps taken to implement, enforce and monitor the RFB. Implementation was the responsibility of those who supplied or used ruminant feed. We have set out in vol. 3: The Early Years, 1986–88 our reasons for concluding that, initially, the ban was deliberately breached as existing stocks of cattle feed were used up. That feature of the story receives further coverage in Chapter 2. We have received no evidence which suggests that there was thereafter any feed compounder or farmer who deliberately included ruminant protein in cattle feed. Until 1994 MAFF officials and the feed trade appear to have been confident that once the effects of the initial ‘carry-over’ had worked their way out, there would be no reason to fear further cases of oral transmission of BSE.

1.11 Once it was realised that cross-contamination was a problem, we shall see that certain limited steps were taken to prevent this occurring. So far as MAFF was concerned, the major effort was put into repairing the up-stream dam, the animal SBO ban.

1.12 Enforcement of the RFB was a non-event. It was the responsibility of the local authorities, whose Trading Standards Officers were powerless to enforce the ban without a test that could demonstrate, to the high standard of proof required in criminal law, that feed being supplied or used for feeding cattle contained ruminant protein. As we shall see, attempts to develop a test to that degree of reliability failed to achieve their goal.

1.13 What did occur was cooperation between the State Veterinary Service and the feed trade to use the test insofar as it had been developed on a voluntary basis in an attempt to identify any sources of contaminated feed. We shall consider whether, on the ruminant feed front, the response to the discovery of the leakage was adequate.

1.14 In Chapter 3 we turn to the animal SBO ban. We shall see how this was initially introduced by the majority, but by no means all, of the feed trade on a voluntary basis. MAFF officials’ and Ministers’ attitude at this stage was that the
ban was neither necessary nor desirable, and we shall consider whether that was an appropriate stance to take. We shall then see how, when a pig proved to have been experimentally inoculated with BSE, MAFF introduced a statutory ban in haste and without consultation.

1.15 The working of the animal SBO ban is considered in Chapters 4a and 4b. Chapter 4a contains a narrative of the events relevant to the implementation, monitoring and enforcement of the animal SBO ban. Chapter 4b contains a detailed discussion of the adequacy of the ban, and the steps taken to implement, monitor and enforce it. Deficiencies in the legislative scheme are examined at some length in Chapter 4b, for they had serious consequences. The adequacy of the steps taken by MAFF officials to make the ban work and to remedy its defects is also examined.

1.16 Chapter 5 is devoted to cattle-tracking. The Agriculture Select Committee which considered BSE in 1990 recommended that MAFF should set up a computerised animal tracing system. The response to that recommendation was that the cost of such a system was not justified by the benefits that it would bring to disease control. We consider whether that was an adequate response.

1.17 Chapter 6 deals with the topics of breeding and artificial insemination (AI). Decisions on how the emergence of BSE should impact on the practice of AI were taken by MAFF with the help of expert advice, but without reference to any expert committee. In contrast, the question of whether farmers should be discouraged or prevented from breeding from the offspring of dams affected by BSE was referred to the Spongiform Encephalopathy Advisory Committee (SEAC). We consider the merits of each procedure.